scispace - formally typeset
Search or ask a question
Author

Hanns Möhler

Bio: Hanns Möhler is an academic researcher from University of Zurich. The author has contributed to research in topics: GABAA receptor & Receptor. The author has an hindex of 77, co-authored 176 publications receiving 22920 citations. Previous affiliations of Hanns Möhler include ETH Zurich & Hoffmann-La Roche.


Papers
More filters
Journal ArticleDOI
25 Nov 1977-Science
TL;DR: Competition for the receptor by various benzodiazepines closely parallels their pharmacological potency, and binding to the receptor is stereospecific.
Abstract: Diazepam, a potent minor tranquilizer, binds with high affinity to a specific benzodiazepine receptor that occurs exclusively in the central nervous system. The receptor is mainly localized in the synaptic membrane fraction. Binding to the receptor is stereospecific. Competition for the receptor by various benzodiazepines closely parallels their pharmacological potency.

1,589 citations

Journal ArticleDOI
TL;DR: This study identifies immunohistochemically the main subunit combinations expressed in the adult rat brain and allocates them to identified neurons, providing the basis for a functional analysis of GABAA‐receptor subtypes of known subunit composition and may open the way for unproved therapeutic approaches based on the development of subtype‐selective drugs.
Abstract: GABAA-receptors display an extensive structural heterogeneity based on the differential assembly of a family of at least 15 subunits (alpha 1-6, beta 1-3, gamma 1-3, delta, rho 1-2) into distinct heteromeric receptor complexes. The subunit composition of receptor subtypes is expected to determine their physiological properties and pharmacological profiles, thereby contributing to flexibility in signal transduction and allosteric modulation. In heterologous expression systems, functional receptors require a combination of alpha-, beta-, and gamma-subunit variants, the gamma 2-subunit being essential to convey a classical benzodiazepine site to the receptor. The subunit composition and stoichiometry of native GABAA-receptor subtypes remain unknown. The aim of this study was to identify immunohistochemically the main subunit combinations expressed in the adult rat brain and to allocate them to identified neurons. The regional and cellular distribution of seven major subunits (alpha 1, alpha 2, alpha 3, alpha 5, beta 2,3, gamma 2, delta) was visualized by immunoperoxidase staining with subunit-specific antibodies (the beta 2- and beta 3-subunits were covisualized with the monoclonal antibody bd-17). Putative receptor subtypes were identified on the basis of colocalization of subunits within individual neurons, as analyzed by confocal laser microscopy in double- and triple-immunofluorescence staining experiments. The results reveal an extraordinary heterogeneity in the distribution of GABAA-receptor subunits, as evidenced by abrupt changes in immunoreactivity along well-defined cytoarchitectonic boundaries and by pronounced differences in the cellular distribution of subunits among various types of neurons. Thus, functionally and morphologically diverse neurons were characterized by a distinct GABAA-receptor subunit repertoire. The multiple staining experiments identified 12 subunit combinations in defined neurons. The most prevalent combination was the triplet alpha 1/beta 2,3/gamma 2, detected in numerous cell types throughout the brain. An additional subunit (alpha 2, alpha 3, or delta) sometimes was associated with this triplet, pointing to the existence of receptors containing four subunits. The triplets alpha 2/beta 2,3/gamma 2, alpha 3/beta 2,3/gamma 2, and alpha 5/beta 2,3/gamma 2 were also identified in discrete cell populations. The prevalence of these seven combinations suggest that they represent major GABAA-receptor subtypes. Five combinations also apparently lacked the beta 2,3-subunits, including one devoid of gamma 2-subunit (alpha 1/alpha 2/gamma 2, alpha 2/gamma 2, alpha 3/gamma 2, alpha 2/alpha 3/gamma 2, alpha 2/alpha 5/delta).(ABSTRACT TRUNCATED AT 400 WORDS)

1,221 citations

Journal ArticleDOI
09 Apr 1981-Nature
TL;DR: The main properties of a representative of this novel class of specific benzodiazepine antagonists are described, whose unique pharmacological activity is to prevent or abolish in a highly selective manner at the receptor level all the characteristic centrally mediated effects of active Benzodiazepines.
Abstract: Benzodiazepines produce most, if not all, of their numerous effects on the central nervous system (CNS) primarily by increasing the function of those chemical synapses that use gamma-amino butyric acid (GABA) as transmitter. This specific enhancing effect on GABAergic synaptic inhibition is initiated by the interaction of benzodiazepines with membrane proteins of certain central neurones, to which drugs of this chemical class bind with high affinity and specificity. The molecular processes triggered by the interaction of these drugs with central benzodiazepine receptors, and which result in facilitation of GABAergic transmission, are still incompletely understood. Theoretically, benzodiazepines could mimic the effect of hypothetical endogenous ligands for the benzodiazepine receptors, although there is no convincing evidence for their existence; in vitro studies indicate that benzodiazepines might compete with a modulatory peptide which is present in the supramolecular assembly formed by GABA receptor, chloride ionophore and benzodiazepine receptor and which reduces the affinity of the GABA receptor for its physiological ligand. The mechanisms of action of benzodiazepines at the molecular level are likely to be better understood following our recent discovery of benzodiazepine derivatives, whose unique pharmacological activity is to prevent or abolish in a highly selective manner at the receptor level all the characteristic centrally mediated effects of active benzodiazepines. Here, we describe the main properties of a representative of this novel class of specific benzodiazepine antagonists.

1,203 citations

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: In this article, a histidine-to-arginine point mutation at position 101 of the murine α1-subunit gene was found to render α-type GABAA receptors insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter γ-aminobutyric acid is preserved.
Abstract: GABAA (γ-aminobutyric acidA) receptors are molecular substrates for the regulation of vigilance, anxiety, muscle tension, epileptogenic activity and memory functions, which is evident from the spectrum of actions elicited by clinically effective drugs acting at their modulatory benzodiazepine-binding site. Here we show, by introducing a histidine-to-arginine point mutation at position 101 of the murine α1-subunit gene, that α1-type GABAA receptors, which are mainly expressed in cortical areas and thalamus1, are rendered insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter γ-aminobutyric acid is preserved. α1(H101R) mice failed to show the sedative, amnesic and partly the anticonvulsant action of diazepam. In contrast, the anxiolytic-like, myorelaxant, motor-impairing and ethanol-potentiating effects were fully retained, and are attributed to the nonmutated GABAA receptors found in the limbic system (α2, α5), in monoaminergic neurons (α3) and in motoneurons (α2, α5)1. Thus, benzodiazepine-induced behavioural responses are mediated by specific GABAA receptor subtypes in distinct neuronal circuits, which is of interest for drug design.

1,126 citations

Journal ArticleDOI
06 Oct 2000-Science
TL;DR: The findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GAB AA receptors,Which predominate in the reticular activating system.
Abstract: Benzodiazepine tranquilizers are used in the treatment of anxiety disorders. To identify the molecular and neuronal target mediating the anxiolytic action of benzodiazepines, we generated and analyzed two mouse lines in which the alpha2 or alpha3 GABAA (gamma-aminobutyric acid type A) receptors, respectively, were rendered insensitive to diazepam by a knock-in point mutation. The anxiolytic action of diazepam was absent in mice with the alpha2(H101R) point mutation but present in mice with the alpha3(H126R) point mutation. These findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GABAA receptors, which predominate in the reticular activating system.

923 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is proposed that these drugs reduce anxiety by impairing the functioning of a widespread neural system including the septo-hippocampal system (SHS), the Papez circuit, the prefrontal cortex, and ascending monoaminergic and cholinergic pathways which innervate these forebrain structures.
Abstract: A model of the neuropsychology of anxiety is proposed. The model is based in the first instance upon an analysis of the behavioural effects of the antianxiety drugs (benzodiazepines, barbiturates, and alcohol) in animals. From such psychopharmacologi-cal experiments the concept of a “behavioural inhibition system” (BIS) has been developed. This system responds to novel stimuli or to those associated with punishment or nonreward by inhibiting ongoing behaviour and increasing arousal and attention to the environment. It is activity in the BIS that constitutes anxiety and that is reduced by antianxiety drugs. The effects of the antianxiety drugs in the brain also suggest hypotheses concerning the neural substrate of anxiety. Although the benzodiazepines and barbiturates facilitate the effects of γ-aminobutyrate, this is insufficient to explain their highly specific behavioural effects. Because of similarities between the behavioural effects of certain lesions and those of the antianxiety drugs, it is proposed that these drugs reduce anxiety by impairing the functioning of a widespread neural system including the septo-hippocampal system (SHS), the Papez circuit, the prefrontal cortex, and ascending monoaminergic and cholinergic pathways which innervate these forebrain structures. Analysis of the functions of this system (based on anatomical, physiological, and behavioural data) suggests that it acts as a comparator: it compares predicted to actual sensory events and activates the outputs of the BIS when there is a mismatch or when the predicted event is aversive. Suggestions are made as to the functions of particular pathways within this overall brain system. The resulting theory is applied to the symptoms and treatment of anxiety in man, its relations to depression, and the personality of individuals who are susceptible to anxiety or depression.

4,725 citations

Journal ArticleDOI
16 Oct 2009-Cell
TL;DR: Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.

3,394 citations

Book ChapterDOI
01 Jan 1996
TL;DR: The action potential is triggered when the membrane potential, which was at the resting level, depolarizes and reaches the threshold of excitation, which triggers the action potential.
Abstract: Excitability. Excitability of cell membranes is crucial for signaling in many types of cell. Excitation in the physiological sense means that the cell membrane potential undergoes characteristic changes which, in most cases, go in the depolarizing direction. Single depolarization from the resting potential to potentials near 0 mV has generally been called an action potential. A schematic representation of a neuronal action potential is given in Fig. 12.1 A. The action potential is triggered when the membrane potential, which was at the resting level, depolarizes and reaches the threshold of excitation. This depolarization, which triggers the action potential, is generated by depolarizing synaptic currents, or depolarizing current coming from a membrane region that is already excited (propagation of an action potential), or by pacemaker currents mediated by pacemaker channels, or by current injected externally by an electrode. The duration of different types of action potential varies from seconds to less than 1 ms.

3,016 citations