scispace - formally typeset
Search or ask a question
Author

Hanqi Zhuang

Bio: Hanqi Zhuang is an academic researcher from Florida Atlantic University. The author has contributed to research in topics: Robot calibration & Robot kinematics. The author has an hindex of 33, co-authored 158 publications receiving 3536 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 1997
TL;DR: It is shown that by installing a number of redundant sensors on the Stewart platform, the system is able to perform self-calibration and the approach provides a tool for rapid and autonomous calibration of the parallel mechanism.
Abstract: Self-calibration has the potential of: 1) removing the dependence on any external pose sensing information; 2) producing high accuracy measurement data over the entire workspace of the system with an extremely fast measurement rate; 3) being automated and completely noninvasive; 4) facilitating on-line accuracy compensation; and 5) being cost effective. A general framework is introduced in this paper for the self-calibration of parallel manipulators. The concept of creating forward and inverse measurement residuals by exploring conflicting information provided with redundant sensing is proposed. Some of these ideas have been widely used for robot calibration when robot end-effector poses are available. By this treatment, many existing kinematic parameter estimation techniques can be applied for the self-calibration of parallel mechanisms. It is illustrated through a case study, i.e. calibration of the Stewart platform, that with this framework the design of a suitable self-calibration system and the formulation of the relevant mathematical model become more systematic. A few principles important to the system self-calibration are also demonstrated through the case study. It is shown that by installing a number of redundant sensors on the Stewart platform, the system is able to perform self-calibration. The approach provides a tool for rapid and autonomous calibration of the parallel mechanism.

224 citations

Journal ArticleDOI
01 Aug 1994
TL;DR: A linear solution that allows a simultaneous computation of the transformations from robot world to robot base and from robot tool to robot flange coordinate frames and is noniterative, fast and robust.
Abstract: The paper presents a linear solution that allows a simultaneous computation of the transformations from robot world to robot base and from robot tool to robot flange coordinate frames. The flange frame is defined on the mounting surface of the end-effector. It is assumed that the robot geometry, i.e., the transformation from the robot base frame to the robot flange frame, is known with sufficient accuracy, and that robot end-effector poses are measured. The solution has applications to accurately locating a robot with respect to a reference frame, and a robot sensor with respect to a robot end-effector. The identification problem is cast as solving a system of homogeneous transformation equations of the form A/sub i/X=YB/sub i/,i=1, 2, ..., m. Quaternion algebra is applied to derive explicit linear solutions for X and Y provided that three robot pose measurements are available. Necessary and sufficient conditions for the uniqueness of the solution are stated. Computationally, the resulting solution algorithm is noniterative, fast and robust. >

207 citations

Journal ArticleDOI
TL;DR: An improved method of extracting eye features from facial images using eye templates is described, which retains all advantages of the deformable template method originally proposed and rectifies some of its weaknesses.

158 citations

Proceedings ArticleDOI
13 May 1990
TL;DR: A kinematic modeling convention for robot manipulators is proposed which has complete and parametrically continuous (CPC) properties and makes the CPC model particularly useful for robot calibration.
Abstract: A kinematic modeling convention for robot manipulators is proposed. The kinematic model is named for its completeness and parametric continuity (CPC) properties. Parametric continuity of the CPC model is achieved by adopting a singularity-free line representation consisting of four line parameters. Completeness is achieved through adding two link parameters to allow arbitrary placement of link coordinate frames. The transformations from the world frame to the base frame and from the last link frame to the tool frame can be modeled with the same modeling convention used for internal link transformations. Since all the redundant parameters in the CPC model can be systematically eliminated, a linearized robot error model can be constructed in which all error parameters are independent and span the entire geometric error space. The focus is on model construction, mappings between the CPC model and the Denavit-Hartenberg model, the study of the model properties, and its application to robot kinematic calibration. >

157 citations

Journal ArticleDOI
TL;DR: In this paper, the accuracy enhancement of Stewart platforms through kinematic calibration is addressed by using a measurement residual, which is the discrepancy between the measured leg length and the computed leg length.
Abstract: This paper focuses on the accuracy enhancement of Stewart platforms through kinematic calibration The calibration problem is formulated in terms of a measurement residual, which is the discrepancy between the measured leg length and the computed leg length With this formulation, one is able to identify kinematic error parameters of the Stewart platform without the necessity of solving the forward kinematic problem; thus avoiding the numerical problems associated with any forward kinematic solution By this formulation, a concise differential error model with a well-structured identification Jacobian, which relates the pose measurement residual to the errors in the parameters of the platform, is derived Experimental studies confirmed the effectiveness of the method It is also shown in this paper that the proposed approach can be applied to other types of parallel manipulators, assuming that their inverse kinematic solution is simpler than its forward kinematic solution Because this condition is satisfied by almost all parallel manipulators, the method is very useful for kinematic calibration of such machines © 1998 John Wiley & Sons, Inc

153 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A new heuristic for feature detection is presented and, using machine learning, a feature detector is derived from this which can fully process live PAL video using less than 5 percent of the available processing time.
Abstract: The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is important because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection and, using machine learning, we derive a feature detector from this which can fully process live PAL video using less than 5 percent of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115 percent, SIFT 195 percent). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that, despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and of very high quality.

1,847 citations

Journal ArticleDOI
TL;DR: A survey on recent developments (or state of the art) of analysis and design of model based fuzzy control systems based on the so-called Takagi-Sugeno fuzzy models or fuzzy dynamic models.
Abstract: Fuzzy logic control was originally introduced and developed as a model free control design approach. However, it unfortunately suffers from criticism of lacking of systematic stability analysis and controller design though it has a great success in industry applications. In the past ten years or so, prevailing research efforts on fuzzy logic control have been devoted to model-based fuzzy control systems that guarantee not only stability but also performance of closed-loop fuzzy control systems. This paper presents a survey on recent developments (or state of the art) of analysis and design of model based fuzzy control systems. Attention will be focused on stability analysis and controller design based on the so-called Takagi-Sugeno fuzzy models or fuzzy dynamic models. Perspectives of model based fuzzy control in future are also discussed

1,575 citations

Journal ArticleDOI
TL;DR: A comprehensive and critical survey of face detection algorithms, ranging from simple edge-based algorithms to composite high-level approaches utilizing advanced pattern recognition methods, is presented.

1,565 citations

Journal ArticleDOI
TL;DR: This review shows that, despite their apparent simplicity, the development of a general eye detection technique involves addressing many challenges, requires further theoretical developments, and is consequently of interest to many other domains problems in computer vision and beyond.
Abstract: Despite active research and significant progress in the last 30 years, eye detection and tracking remains challenging due to the individuality of eyes, occlusion, variability in scale, location, and light conditions. Data on eye location and details of eye movements have numerous applications and are essential in face detection, biometric identification, and particular human-computer interaction tasks. This paper reviews current progress and state of the art in video-based eye detection and tracking in order to identify promising techniques as well as issues to be further addressed. We present a detailed review of recent eye models and techniques for eye detection and tracking. We also survey methods for gaze estimation and compare them based on their geometric properties and reported accuracies. This review shows that, despite their apparent simplicity, the development of a general eye detection technique involves addressing many challenges, requires further theoretical developments, and is consequently of interest to many other domains problems in computer vision and beyond.

1,514 citations