scispace - formally typeset
Search or ask a question
Author

Hanqiu Sun

Bio: Hanqiu Sun is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Rendering (computer graphics) & Haptic technology. The author has an hindex of 25, co-authored 171 publications receiving 1950 citations. Previous affiliations of Hanqiu Sun include City University of Hong Kong & Hong Kong University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2006
TL;DR: This paper presents the Parallel-Split Shadow Maps (PSSMs) scheme, which splits the view frustum into different parts by using the planes parallel to the view plane and then generates multiple smaller shadow maps for the split parts.
Abstract: Shadowing effects dramatically enhance the realism of virtual environments by providing useful visual cues. Shadow mapping is an efficient algorithm for real-time shadow rendering, which is extensively adopted in real-time applications by its generality and efficiency. However, shadow mapping usually suffers from the inherent aliasing errors due to the image-based nature. In this paper, we present the Parallel-Split Shadow Maps (PSSMs) scheme, which splits the view frustum into different parts by using the planes parallel to the view plane and then generates multiple smaller shadow maps for the split parts. A fast and robust split strategy based on the analysis of shadow map aliasing has been proposed, which produces a moderate aliasing distribution over the whole depth range. By applying the geometry approximation procedure to each of the split parts instead of the whole scene, the tighter bounding shapes of visible objects enhance the utilization of the shadow map resolution. Hardware-acceleration is used to remove the extra rendering passes when synthesizing the scene-shadows. Our approach is intuitive to implement without using complex data structures, with real-time performance for dynamic and large-scale virtual environments.

114 citations

Journal ArticleDOI
TL;DR: A composite attention mechanism that learns multi-scale local attentions and global attention priors end-to-end is used for enhancing the fused spatiotemporal features via emphasizing important features in multi-scales.
Abstract: This paper proposes a novel residual attentive learning network architecture for predicting dynamic eye-fixation maps. The proposed model emphasizes two essential issues, i.e ., effective spatiotemporal feature integration and multi-scale saliency learning. For the first problem, appearance and motion streams are tightly coupled via dense residual cross connections, which integrate appearance information with multi-layer, comprehensive motion features in a residual and dense way. Beyond traditional two-stream models learning appearance and motion features separately, such design allows early, multi-path information exchange between different domains, leading to a unified and powerful spatiotemporal learning architecture. For the second one, we propose a composite attention mechanism that learns multi-scale local attentions and global attention priors end-to-end. It is used for enhancing the fused spatiotemporal features via emphasizing important features in multi-scales. A lightweight convolutional Gated Recurrent Unit (convGRU), which is flexible for small training data situation, is used for long-term temporal characteristics modeling. Extensive experiments over four benchmark datasets clearly demonstrate the advantage of the proposed video saliency model over other competitors and the effectiveness of each component of our network. Our code and all the results will be available at https://github.com/ashleylqx/STRA-Net .

113 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel approach for compact video synopsis using a unified spatiotemporal optimization, which globally shifts moving objects in both spatial and temporal domains to reduce the length of the video and shifting colliding objects spatially to avoid visible collision artifacts.
Abstract: Video synopsis aims at providing condensed representations of video data sets that can be easily captured from digital cameras nowadays, especially for daily surveillance videos. Previous work in video synopsis usually moves active objects along the time axis, which inevitably causes collisions among the moving objects if compressed much. In this paper, we propose a novel approach for compact video synopsis using a unified spatiotemporal optimization. Our approach globally shifts moving objects in both spatial and temporal domains, which shifting objects temporally to reduce the length of the video and shifting colliding objects spatially to avoid visible collision artifacts. Furthermore, using a multilevel patch relocation (MPR) method, the moving space of the original video is expanded into a compact background based on environmental content to fit with the shifted objects. The shifted objects are finally composited with the expanded moving space to obtain the high-quality video synopsis, which is more condensed while remaining free of collision artifacts. Our experimental results have shown that the compact video synopsis we produced can be browsed quickly, preserves relative spatiotemporal relationships, and avoids motion collisions.

94 citations

Journal ArticleDOI
TL;DR: This paper demonstrates an image- space collision detection process that allows substantial computational savings during the image-space interference test and makes efficient use of the graphics rendering hardware for real-time complex object interactions.
Abstract: Object interactions are ubiquitous in interactive computer graphics, 3D object motion simulations, virtual reality and robotics applications. Most collision detection algorithms are based on geometrical object-space interference tests. Some algorithms have employed an image-space approach to the collision detection problem. In this paper we demonstrate an image-space collision detection process that allows substantial computational savings during the image-space interference test. This approach makes efficient use of the graphics rendering hardware for real-time complex object interactions. Copyright © 1999 John Wiley & Sons, Ltd.

85 citations

Journal ArticleDOI
TL;DR: This paper presents an approach to edit colors of an image by adjusting a compact color palette by proposing a color decomposition optimization for flexible recoloring while retaining inherent color characteristics residing in the source image.
Abstract: Previous works on palette-based color manipulation typically fail to produce visually pleasing results with vivid color and natural appearance. In this paper, we present an approach to edit colors of an image by adjusting a compact color palette. Different from existing methods that fail to preserve inherent color characteristics residing in the source image, we propose a color decomposition optimization for flexible recoloring while retaining these characteristics. For an input image, we first employ a variant of the $k$ -means algorithm to create a palette consisting of a small set of most representative colors. Next, we propose a color decomposition optimization to decompose colors of the entire image into linear combinations of basis colors in the palette. The captured linear relationships then allow us to recolor the image by recombining the coding coefficients with a user-modified palette. Qualitative comparisons with existing methods show that our approach can more effectively recolor images. Further user study quantitatively demonstrates that our method is a good candidate for color manipulation tasks. In addition, we showcase some applications enabled by our method, including pattern colorings suggesting, color transfer, tissue staining analysis and color image segmentation.

79 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1985
TL;DR: The first group of results in fixed point theory were derived from Banach's fixed point theorem as discussed by the authors, which is a nice result since it contains only one simple condition on the map F, since it is easy to prove and since it nevertheless allows a variety of applications.
Abstract: Formally we have arrived at the middle of the book. So you may need a pause for recovering, a pause which we want to fill up by some fixed point theorems supplementing those which you already met or which you will meet in later chapters. The first group of results centres around Banach’s fixed point theorem. The latter is certainly a nice result since it contains only one simple condition on the map F, since it is so easy to prove and since it nevertheless allows a variety of applications. Therefore it is not astonishing that many mathematicians have been attracted by the question to which extent the conditions on F and the space Ω can be changed so that one still gets the existence of a unique or of at least one fixed point. The number of results produced this way is still finite, but of a statistical magnitude, suggesting at a first glance that only a random sample can be covered by a chapter or even a book of the present size. Fortunately (or unfortunately?) most of the modifications have not found applications up to now, so that there is no reason to write a cookery book about conditions but to write at least a short outline of some ideas indicating that this field can be as interesting as other chapters. A systematic account of more recent ideas and examples in fixed point theory should however be written by one of the true experts. Strange as it is, such a book does not seem to exist though so many people are puzzling out so many results.

994 citations

Journal ArticleDOI
TL;DR: In this paper, various approaches based on bounding volume hierarchies, distance fields and spatial partitioning are discussed for collision detection of deformable objects in interactive environments for surgery simulation and entertainment technology.
Abstract: Interactive environments for dynamically deforming objects play an important role in surgery simulation and entertainment technology. These environments require fast deformable models and very efficient collision handling techniques. While collision detection for rigid bodies is well investigated, collision detection for deformable objects introduces additional challenging problems. This paper focuses on these aspects and summarizes recent research in the area of deformable collision detection. Various approaches based on bounding volume hierarchies, distance fields and spatial partitioning are discussed. In addition, image-space techniques and stochastic methods are considered. Applications in cloth modeling and surgical simulation are presented.

591 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: This paper provides methods with which a user can search a large database of 3D meshes to find parts of interest, cut the desired parts out of the meshes with intelligent scissoring, and composite them together in different ways to form new objects.
Abstract: In this paper, we investigate a data-driven synthesis approach to constructing 3D geometric surface models. We provide methods with which a user can search a large database of 3D meshes to find parts of interest, cut the desired parts out of the meshes with intelligent scissoring, and composite them together in different ways to form new objects. The main benefit of this approach is that it is both easy to learn and able to produce highly detailed geometric models -- the conceptual design for new models comes from the user, while the geometric details come from examples in the database. The focus of the paper is on the main research issues motivated by the proposed approach: (1) interactive segmentation of 3D surfaces, (2) shape-based search to find 3D models with parts matching a query, and (3) composition of parts to form new models. We provide new research contributions on all three topics and incorporate them into a prototype modeling system. Experience with our prototype system indicates that it allows untrained users to create interesting and detailed 3D models.

554 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a deep video saliency network consisting of two modules, for capturing the spatial and temporal saliency information, respectively, which can directly produce spatio-temporal saliency inference without time-consuming optical flow computation.
Abstract: This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).

550 citations