scispace - formally typeset
Search or ask a question
Author

Hans Ågren

Bio: Hans Ågren is an academic researcher from Uppsala University. The author has contributed to research in topics: Photon upconversion & Excited state. The author has an hindex of 34, co-authored 188 publications receiving 3710 citations. Previous affiliations of Hans Ågren include Harbin Institute of Technology & Royal Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The theory and principles of computational phosphorescence are illustrated by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids.
Abstract: Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative...

362 citations

Journal ArticleDOI
TL;DR: This tutorial review highlights recent progress in the development of dye Sensitized UCNPs, with an emphasis on the theory of energy transfer, the geometric classification of the dye sensitized core and core/shell nanocrystals, and their emerging photonic and biophotonic applications.
Abstract: Lanthanide-doped upconversion nanoparticles (UCNPs) are promising for applications as wide as biological imaging, multimodal imaging, photodynamic therapy, volumetric displays, and solar cells. Yet, the weak and narrow absorption of lanthanide ions poses a fundamental limit of UCNPs to withhold their brightness, creating a long-standing hurdle for the field. Dye-sensitized UCNPs are emerging to address this performance-limiting problem, yielding up to thousands-fold brighter luminescence than conventional UCNPs without dye sensitization. In their configuration, organic dyes with spectrally broad and intense absorption are anchored to the surface of UCNPs to harvest the excitation light energy, which is then transferred via Forster and/or Dexter mechanisms across the organic/inorganic interface to the lanthanides incorporated in UCNPs (with or devoid of a shell) to empower efficient upconversion. This tutorial review highlights recent progress in the development of dye sensitized UCNPs, with an emphasis on the theory of energy transfer, the geometric classification of the dye sensitized core and core/shell nanocrystals, and their emerging photonic and biophotonic applications. Opportunities and challenges offered by dye sensitized UCNPs are also discussed.

241 citations

Journal ArticleDOI
TL;DR: An efficient STED mechanism using optimized lanthanide upconversion nanoparticles is developed, enabling cytoskeleton nanoscopic imaging and two-color super-resolution imaging using upconversions using a single pair of excitation/depletion beams.
Abstract: Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light–matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

226 citations

Journal ArticleDOI
26 Jan 2021-ACS Nano
TL;DR: In this paper, the photoresponse performance of few-layer niobium carbide (Nb2C) nanosheets was investigated for both photoelectrochemical-type photodetectors (PDs) and mode-lockers.
Abstract: Although the physicochemical properties of niobium carbide (Nb2C) have been widely investigated, their exploration in the field of photoelectronics is still at the infancy stage with many potential applications that remain to be exploited. Hence, it is demonstrated here that few-layer Nb2C MXene can serve as an excellent building block for both photoelectrochemical-type photodetectors (PDs) and mode-lockers. We show that the photoresponse performance can be readily adjusted by external conditions and that Nb2C NSs exhibit a great potential for narrow-band PDs. The demonstrated mechanism was further confirmed by work functions predicted by density functional theory calculations. In addition, as an optical switch for passively mode-locked fiber lasers, ultrastable pulses can be demonstrated in the telecommunication and mid-infrared regions for Nb2C MXene, and as high as the 69th harmonic order with 411 MHz at the center wavelength of 1882 nm can be achieved. These intriguing results indicate that few-layer Nb2C nanosheets can be used as building blocks for various photoelectronic devices, further broadening the application prospects of two-dimensional MXenes.

138 citations

Journal ArticleDOI
01 May 1986
TL;DR: A general purpose MC SCF program with a direct, fully second-order and step-restricted algorithm that allows for applications to large wavefunctions and convergence to the lowest state of a symmetry is guaranteed.
Abstract: A general purpose MC SCF program with a direct, fully second-order and step-restricted algorithm is presented. The direct character refers to the solution of an MC SCF eigenvalue equation by means of successive linear transformations where the norm-extended hessian matrix is multiplied onto a trial vector without explicitly constructing the hessian. This allows for applications to large wavefunctions. In the iterative solution of the eigenvalue equation a norm-extended optimization algorithm is utilized in which the number of negative eigenvalues of the hessian is monitored. The step control is based on the trust region concept and is accomplished by means of a simple modification of the Davidson—Liu simultaneous expansion method for iterative calculation of an eigenvector. Convergence to the lowest state of a symmetry is thereby guaranteed, and test calculations also show reliable convergence for excited states. We outline the theory and describe in detail an efficient implementation, illustrated with sample calculations.

127 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The authors show the double-slit interference effect in the strong-field ionization of neon dimers by employing COLTRIMS method to record the momentum distribution of the photoelectrons in the molecular frame.
Abstract: Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

7,160 citations

Journal ArticleDOI
TL;DR: In this paper, a second-order optimisation procedure for general complete active space (CAS) wavefunctions is described. But this method is restricted to very long complete active spaces.

2,365 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations