scispace - formally typeset
Search or ask a question
Author

Hans Blattmann

Other affiliations: University of Bern
Bio: Hans Blattmann is an academic researcher from Paul Scherrer Institute. The author has contributed to research in topics: Radiation therapy & Microbeam. The author has an hindex of 28, co-authored 69 publications receiving 3369 citations. Previous affiliations of Hans Blattmann include University of Bern.


Papers
More filters
Journal ArticleDOI
TL;DR: The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI) and the status of the facility and first experimental results are introduced for later reference.
Abstract: The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI). The beam delivered by the PSI sector cyclotron can be split and brought into a new hall where it is degraded from 590 MeV down to an energy in the range of 85-270 MeV. A new beam line following the degrader is used to clean the low-energetic beam in phase space and momentum band. The analyzed beam is then injected into a compact isocentric gantry, where it is applied to the patient using a new dynamic treatment modality, the so-called spot-scanning technique. This technique will permit full three-dimensional conformation of the dose to the target volume to be realized in a routine way without the need for individualized patient hardware like collimators and compensators. By combining the scanning of the focused pencil beam within the beam optics of the gantry and by mounting the patient table eccentrically on the gantry, the diameter of the rotating structure has been reduced to only 4 m. In the article the degrees of freedom available on the gantry to apply the beam to the patient (with two rotations for head treatments) are also discussed. The devices for the positioning of the patient on the gantry (x rays and proton radiography) and outside the treatment room (the patient transporter system and the modified mechanics of the computer tomograph unit) are briefly presented. The status of the facility and first experimental results are introduced for later reference.

651 citations

Journal ArticleDOI
TL;DR: A computer simulation of the dose deposition in the presence of respiratory motion was performed, finding that broad, Gaussian beams result in better dose uniformity than narrow, sharply delineated ones, but produce slower dose fall-off at the edges of the scanned volume.
Abstract: A three-dimensional spot-scanning technique for radiotherapy with protons is being developed at the Paul Scherrer Institute. As part of the effort to optimize the design and ensure clinically useful dose distributions, a computer simulation of the dose deposition in the presence of respiratory motion was performed. Preliminary experiments have characterized the proton beam and the scanning procedure. Using these parameters, the computer program calculated the dose within a uniform volume of water in the presence of respiratory motion. Respiration amplitude, respiration period, respiration direction, number of fractions, size and position of the beamspots and rescanning multiplicity were systematically varied and the effect on the dose distribution determined. The dose uniformity is very dependent on the direction of the respiration relative to the three independent beam scanning directions. The dose uniformity decreases with increasing respiration amplitude, but has little response to changes in respiration frequency. Rescanning the volume, such as with fractionation, improves the dose uniformity roughly as the square root of the number of fractions. Broad, Gaussian beams result in better dose uniformity than narrow, sharply delineated ones, but produce slower dose fall-off at the edges of the scanned volume. Results of this work are being incorporated into the design of the system.

267 citations

Journal ArticleDOI
TL;DR: The paper highlights the history of MRT including salient biological findings after microbeam irradiation with emphasis on the vascular components and the tolerance of the central nervous system and details on experimental and theoretical dosimetry of microbeams, core issues and possible therapeutic applications of M RT are presented.
Abstract: Microbeam radiation therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50–600 keV, produced by third generation synchrotron sources, such as the European Synchrotron Radiation Facility (ESRF), in France. The main advantages of highly brilliant synchrotron sources are an extremely high dose rate and very small beam divergence. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. The minimal beam divergence results in the advantage of steeper dose gradients delivered to a tumor target, thus achieving a higher dose deposition in the target volume in fractions of seconds, with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has yielded many results from preclinical trials based on different animal models, including mice, rats, piglets and rabbits. Typically, MRT uses arrays of narrow (∼25–100 μm wide) microplanar beams separated by wider (100–400 μm centre-to-centre) microplanar spaces. The height of these microbeams typically varies from 1 to 100 mm, depending on the target and the desired preselected field size to be irradiated. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues, up to ∼2 yr after irradiation, and at the same time show a preferential damage of malignant tumor tissues; these effects of MRT have now been extensively studied over nearly two decades. More recently, some biological in vivo effects of synchrotron X-ray beams in the millimeter range (0.68–0.95 mm, centre-to-centre distances 1.2–4 mm), which may differ to some extent from those of microscopic beams, have been followed up to ∼7 months after irradiation. Comparisons between broad-beam irradiation and MRT indicate a higher tumor control for the same sparing of normal tissue in the latter, even if a substantial fraction of tumor cells are not receiving a radiotoxic level of radiation. The hypothesis of a selective radiovulnerability of the tumor vasculature versus normal blood vessels by MRT, and of the cellular and molecular mechanisms involved remains under investigation. The paper highlights the history of MRT including salient biological findings after microbeam irradiation with emphasis on the vascular components and the tolerance of the central nervous system. Details on experimental and theoretical dosimetry of microbeams, core issues and possible therapeutic applications of MRT are presented.

191 citations

Proceedings ArticleDOI
19 Dec 2001
TL;DR: Observations give further credence to MRT's potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous, in young adult rats bearing intracerebral gliosarcomas.
Abstract: The cerebellum of the weanling piglet (Yorkshire) was used as a surrogate for the radiosensitive human infant cerebellum in a Swiss-led program of experimental microbeam radiation therapy (MRT) at the ESRF. Five weanlings in a 47 day old litter of seven, and eight weanlings in a 40 day old litter of eleven were irradiated in November, 1999 and June, 2000, respectively. A 1.5 cm-wide x 1.5 xm-high array of equally space approximately equals 20-30 micrometers wide, upright microbeams spaced at 210 micrometers intervals was propagated horizontally, left to right, through the cerebella of the prone, anesthetized piglets. Skin-entrance intra-microbeam peak adsorbed doses were uniform, either 150, 300, 425, or 600 gray (Gy). Peak and inter-microbeam (valley) absorbed doses in the cerebellum were computed with the PSI version of the Monte Carlo code GEANT and benchmarked using Gafchromic and radiochromic film microdosimetry. For approximately equals 66 weeks [first litter; until euthanasia], or approximately equals 57 weeks [second litter; until July 30, 2001] after irradiation, the littermates were developmentally, behaviorally, neurologically and radiologically normal as observed and tested by experienced farmers and veterinary scientists unaware of which piglets were irradiated or sham-irradiated. Morever, MRT implemented at the ESRF with a similar array of microbeams and a uniform skin-entrance peak dose of 625 Gy, followed by immunoprophylaxis, was shown to be palliative or curative in young adult rats bearing intracerebral gliosarcomas. These observations give further credence to MRT's potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

165 citations

Journal ArticleDOI
TL;DR: A novel tracking technique is developed which will allow to measure tumour positions directly and continuously with high resolution in space and time and can also be used to survey and monitor the patient positioning.
Abstract: Changing tumour positions induced by organ motion can impede the full exploitation of the strengths of conformal radiotherapy. The unnecessary irradiation of healthy tissue surrounding the target volume can be the consequence. To overcome this, one should measure tumour positions directly and continuously with high resolution in space and time. We have developed a novel tracking technique which will allow this. The method can also be used to survey and monitor the patient positioning. The proper functioning of our method has been technically demonstrated at PSI with the help of phantom irradiation with protons. Implementation into the clinical environment is now beginning.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The magnitude of respiratory motion is described, radiotherapy specific problems caused by respiratory motion are discussed, techniques that explicitly manage respiratory motion during radiotherapy are explained, and recommendations in the application of these techniques for patient care are given.
Abstract: This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than 5 mm, a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.

1,891 citations

01 Jan 2001
TL;DR: This poster presents a probabilistic procedure for estimating the intensity values of radiolysis-like particles in the presence of X-ray diffraction waves.
Abstract: Pedro Andreo, Dosimetry and Medical Radiation Physics Section, IAEA David T Burns, Bureau International des Poids et Measures (BIPM) Klaus Hohlfeld, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany M Saiful Huq, Thomas Jefferson University, Philadelphia, USA Tatsuaki Kanai, National Institute of Radiological Sciences (NIRS), Chiba, Japan Fedele Laitano, Ente per le Nuove Tecnologie L’Energia e L’Ambiente (ENEA), Rome, Italy Vere Smyth, National Radiation Laboratory (NRL), Christchurch, New Zealand Stefaan Vynckier, Catholic University of Louvain (UCL), Brussels, Belgium

1,699 citations

Journal ArticleDOI
TL;DR: Data pertaining to the intrafraction movement of the liver, diaphragm, kidneys, pancreas, lung tumors, and prostate is compiled and methods for managing interfraction and intrafractions organ motion in radiation therapy are reviewed.
Abstract: Purpose: To compile and review data on the topic of organ motion and its management Methods and Materials: Data were classified into three categories: (a) patient position-related organ motion, (b) interfraction organ motion, and (c) intrafraction organ motion Data on interfraction motion of gynecological tumors, the prostate, bladder, and rectum are reviewed Literature pertaining to the intrafraction movement of the liver, diaphragm, kidneys, pancreas, lung tumors, and prostate is compiled Methods for managing interfraction and intrafraction organ motion in radiation therapy are also reviewed

948 citations

Journal ArticleDOI
TL;DR: The design and technical realization of the magnetic scanning system at GSI combines features of both scan techniques and it was found that both methods lead to nearly identical results.
Abstract: Beams of heavy ions have favourable physical and biological properties for the use in radiotherapy. These advantages are most pronoucced if the beam is delivered in a tumor-conform way by active beam scanning. A magnetic scanning technique is used to spread the beam laterally. The range of the particles in tissue is controlled by the variation of the beam energy in the accelerator. Computer simulations were used to compare a discrete scan mode (pixel scan) with a continous scan mode (raster scan). It was found that both methods lead to nearly identical results. The design and technical realization of the magnetic scanning system at GSI combines features of both scan techniques. First results using the lateral beam scanning method as well as the combination of the active energy variation with the magnetic beam scanning are presented.

728 citations

Journal ArticleDOI
TL;DR: This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties in proton RBE values to clinically acceptable levels.
Abstract: Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint.Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed.Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1.This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.

664 citations