scispace - formally typeset
Search or ask a question
Author

Hans Christian Steen-Larsen

Bio: Hans Christian Steen-Larsen is an academic researcher from Geophysical Institute, University of Bergen. The author has contributed to research in topics: Ice core & Water vapor. The author has an hindex of 26, co-authored 73 publications receiving 2864 citations. Previous affiliations of Hans Christian Steen-Larsen include Cooperative Institute for Research in Environmental Sciences & Bermuda Institute of Ocean Sciences.
Topics: Ice core, Water vapor, Snow, δ18O, Humidity


Papers
More filters
Journal ArticleDOI
Dorthe Dahl-Jensen, Mary R. Albert1, Ala Aldahan2, Nobuhiko Azuma3, David Balslev-Clausen4, Matthias Baumgartner, Ann-Marie Berggren2, Matthias Bigler, Tobias Binder5, Thomas Blunier, J. C. Bourgeois6, Edward J. Brook7, Susanne L Buchardt4, Christo Buizert, Emilie Capron, Jérôme A Chappellaz8, J. Chung9, Henrik Clausen4, Ivana Cvijanovic4, Siwan M. Davies10, Peter D. Ditlevsen4, Olivier Eicher11, Hubertus Fischer11, David A. Fisher6, L. G. Fleet12, Gideon Gfeller11, Vasileios Gkinis4, Sivaprasad Gogineni13, Kumiko Goto-Azuma14, Aslak Grinsted4, H. Gudlaugsdottir15, Myriam Guillevic4, S. B. Hansen4, Martin Hansson16, Motohiro Hirabayashi14, S. Hong, S. D. Hur9, Philippe Huybrechts17, Christine S. Hvidberg4, Yoshinori Iizuka16, Theo M. Jenk4, Sigfus J Johnsen4, Tyler R. Jones18, Jean Jouzel, Nanna B. Karlsson4, Kenji Kawamura14, Kaitlin M. Keegan1, E. Kettner4, Sepp Kipfstuhl19, Helle Astrid Kjær4, Michelle Koutnik20, Takayuki Kuramoto14, Peter Köhler19, Thomas Laepple19, Amaelle Landais, Peter L. Langen4, L. B. Larsen4, Daiana Leuenberger11, Markus Leuenberger, Carl Leuschen13, J. Li13, Vladimir Ya. Lipenkov21, Patricia Martinerie8, Olivia J. Maselli22, Valérie Masson-Delmotte, Joseph R. McConnell22, Heinrich Miller19, Olivia Mini11, A. Miyamoto23, M. Montagnat-Rentier24, Robert Mulvaney12, Raimund Muscheler, Anais Orsi25, John Paden13, Christian Panton4, Frank Pattyn26, Jean-Robert Petit8, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet24, Sune Olander Rasmussen4, Dominique Raynaud8, J. Ren, C. Reutenauer4, Catherine Ritz8, Thomas Röckmann, Jean Rosen7, Mauro Rubino, Oleg Rybak19, Denis Samyn2, Célia Sapart27, Adrian Schilt28, A. Schmidt4, Jakob Schwander11, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus25, Simon G. Sheldon4, Sebastian B. Simonsen4, Jesper Sjolte, Anne M. Solgaard4, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen29, Konrad Steffen30, J. P. Steffensen31, Daniel Steinhage19, Thomas F. Stocker, C. Stowasser18, A. S. Sturevik32, W. T. Sturges33, Arny E. Sveinbjörnsdottir29, A. Svensson30, Jean-Louis Tison31, J. Uetake34, Paul Vallelonga, R. S. W. van de Wal19, G. van der Wel11, Bruce H. Vaughn4, Bo Møllesøe Vinther2, E. Waddington35, Anna Wegner, Ilka Weikusat19, James W. C. White26, Frank Wilhelms19, Mai Winstrup4, Emmanuel Witrant, Eric W. Wolff11, C. Xiao, J. Zheng36 
24 Jan 2013-Nature
TL;DR: In this paper, the North Greenland Eemian Ice Drilling (NEEM) ice core was extracted from folded Greenland ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

546 citations

Dorthe Dahl-Jensen, Mary R. Albert, Ala Aldahan, Nobuhiko Azuma, David Balslev-Clausen, Matthias Baumgartner, Ann-Marie Berggren, Matthias Bigler, Tobias Binder, Thomas Blunier, J. C. Bourgeois, Edward J. Brook, Susanne L Buchardt, Christo Buizert, Emilie Capron, Jérôme A Chappellaz, J. Chung, Henrik Clausen, Ivana Cvijanovic, Siwan M. Davies, Peter D. Ditlevsen, Olivier Eicher, Hubertus Fischer, David A. Fisher, L. G. Fleet, Gideon Gfeller, Vasileios Gkinis, Sivaprasad Gogineni, Kumiko Goto-Azuma, Aslak Grinsted, H. Gudlaugsdottir, Myriam Guillevic, S. B. Hansen, Martin Hansson, Motohiro Hirabayashi, S. Hong, S. D. Hur, Philippe Huybrechts, Christine S. Hvidberg, Yoshinori Iizuka, Theo M. Jenk, Sigfus J Johnsen, Tyler R. Jones, Jean Jouzel, Nanna B. Karlsson, Kenji Kawamura, Kaitlin M. Keegan, E. Kettner, Sepp Kipfstuhl, Helle Astrid Kjær, Michelle Koutnik, Takayuki Kuramoto, Peter Köhler, Thomas Laepple, Amaelle Landais, Peter L. Langen, L. B. Larsen, Daiana Leuenberger, Markus Leuenberger, Carl Leuschen, J. Li, Vladimir Ya. Lipenkov, Patricia Martinerie, Olivia J. Maselli, Valérie Masson-Delmotte, Joseph R. McConnell, Heinrich Miller, Olivia Mini, A. Miyamoto, M. Montagnat-Rentier, Robert Mulvaney, Raimund Muscheler, Anais Orsi, John Paden, Christian Panton, Frank Pattyn, Jean-Robert Petit, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet, Sune Olander Rasmussen, Dominique Raynaud, J. Ren, C. Reutenauer, Catherine Ritz, Thomas Röckmann, Jean Rosen, Mauro Rubino, Oleg Rybak, Denis Samyn, Célia Sapart, Adrian Schilt, A. Schmidt, Jakob Schwander, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus, Simon G. Sheldon, Sebastian B. Simonsen, Jesper Sjolte, Anne M. Solgaard, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen, Konrad Steffen, J. P. Steffensen, Daniel Steinhage, Thomas F. Stocker, C. Stowasser, A. S. Sturevik, W. T. Sturges, Arny E. Sveinbjörnsdottir, A. Svensson, Jean-Louis Tison, J. Uetake, Paul Vallelonga, R. S. W. van de Wal, G. van der Wel, Bruce H. Vaughn, Bo Møllesøe Vinther, E. Waddington, Anna Wegner, Ilka Weikusat, James W. C. White, Frank Wilhelms, Mai Winstrup, Emmanuel Witrant, Eric W. Wolff, C. Xiao, J. Zheng, N Community 
01 Jan 2013
TL;DR: The new North Greenland Eemian Ice Drilling (‘NEEM’) ice core is presented and shows only a modest ice-sheet response to the strong warming in the early Eemians, which was probably driven by the decreasing summer insolation.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

451 citations

Journal ArticleDOI
TL;DR: Improved measurement and modeling of water vapor isotopic composition opens the door to new advances in the understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere.
Abstract: The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term datasets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in-situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water- and ice-size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

247 citations

Journal ArticleDOI
TL;DR: In this article, the authors observed a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11°C−1 (R = 0.76) for 2012).
Abstract: . Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011–2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model–data comparisons, and call for further process studies.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the NEEM deep ice core isotope data was analyzed for their isotope composition to understand the processes affecting the climatic signal archived in the water stable isotope records from the deep core, showing that the intermittency of modern winter precipitation is responsible for the lack of strong NAO imprint.
Abstract: [1] Samples of precipitation and atmospheric water vapor were collected together with shallow firn/ice cores as part of the new deep drilling project in northwest Greenland: the NEEM project. These samples were analyzed for their isotope composition to understand the processes affecting the climatic signal archived in the water stable isotope records from the NEEM deep ice core. The dominant moisture source for the snow deposited at the NEEM-site may be originating as far south as 35°N from the western part of the Atlantic Ocean. The surface atmospheric water vapor appears in isotopic equilibrium with the snow surface indicating a large water exchange between the atmosphere and snowpack. The interannual variability of NEEM shallow firn/ice cores stable isotope data covering the last ∼40 years shows an unexpectedly weak NAO signal. Regional to global atmospheric models simulate a dominant summer precipitation in the NEEM area, suggesting that the intermittency of modern winter precipitation is responsible for the lack of a strong NAO imprint. The interannual variability of NEEM isotope data however shows a strong correlation with interannual variations of Baffin Bay sea ice cover, a relationship consistent with air mass trajectories. NEEM deep ice core isotopic records may therefore provide detailed information on past Baffin Bay sea ice extent. NEEM stable water isotope content increasing trend points to a local warming trend of ∼3.0°C over the last 40 years.

139 citations


Cited by
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

Journal ArticleDOI
TL;DR: A copy of the Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?".
Abstract: A copy of Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?" It said: "… Young friends, you are certainly very concerned about this problem'. So, we would like you to meet the young women workers Meng Xiaoyu and Meng Yamei and the older cadre Miss Feng. They are the three leading characters in the short story ‘The Place of Love.’ Through the description of the love lives of these three, the story induces us to think deeply about two questions that merit further examination.

1,528 citations

Journal ArticleDOI
31 Mar 2016-Nature
TL;DR: A model coupling ice sheet and climate dynamics—including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs—is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios.
Abstract: Polar temperatures over the last several million years have, at times, been slightly warmer than today, yet global mean sea level has been 6-9 metres higher as recently as the Last Interglacial (130,000 to 115,000 years ago) and possibly higher during the Pliocene epoch (about three million years ago). In both cases the Antarctic ice sheet has been implicated as the primary contributor, hinting at its future vulnerability. Here we use a model coupling ice sheet and climate dynamics-including previously underappreciated processes linking atmospheric warming with hydrofracturing of buttressing ice shelves and structural collapse of marine-terminating ice cliffs-that is calibrated against Pliocene and Last Interglacial sea-level estimates and applied to future greenhouse gas emission scenarios. Antarctica has the potential to contribute more than a metre of sea-level rise by 2100 and more than 15 metres by 2500, if emissions continue unabated. In this case atmospheric warming will soon become the dominant driver of ice loss, but prolonged ocean warming will delay its recovery for thousands of years.

1,433 citations

Journal ArticleDOI
TL;DR: In this paper, a more detailed and extended version of the Greenland Stadials (GS) and Greenland Interstadials (GI) template for the whole of the last glacial period is presented, based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records.

1,417 citations

Journal ArticleDOI
30 Jul 2015-Nature
TL;DR: It is shown that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years and cooling was proportional to the magnitude of volcanic forcing.
Abstract: Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

841 citations