scispace - formally typeset
Search or ask a question
Author

Hans-Dieter Meyer

Bio: Hans-Dieter Meyer is an academic researcher from Heidelberg University. The author has contributed to research in topics: Hartree & Potential energy surface. The author has an hindex of 63, co-authored 265 publications receiving 17125 citations. Previous affiliations of Hans-Dieter Meyer include Hebrew University of Jerusalem & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the multiconfiguration time-dependent Hartree (MCTDH) method for propagating wavepackets is given, and the formal derivation, numerical implementation, and performance of the method are detailed.

2,053 citations

Journal ArticleDOI
TL;DR: In this article, a multi-configurational approach to the time-dependent Schrodinger equation is proposed, which can be used for n degrees of freedom and for any choice of the number of configurations.

1,678 citations

Journal ArticleDOI
TL;DR: In this article, the multiconfigurational timedependent Hartree (MCTDH) approximation to the timedependent Schrodinger equation is tested for a realistic three-dimensional example, the photodissociation of NOCl.
Abstract: The multiconfigurational time‐dependent Hartree (MCTDH) approximation to the time‐dependent Schrodinger equation is tested for a realistic three‐dimensional example, the photodissociation of NOCl. The working equations of the MCTDH scheme introduced earlier are discussed in some detail. A computational scheme is presented which allows for efficient numerical MCTDH calculations. This scheme is applied to the photodissociation of NOCl after excitation to the S1 surface. The results are compared to the results of an exact wave‐packet dynamics calculation. Fast convergence of the MCTDH results toward the exact one is found as the number of configurations is increased. The computation times of the MCTDH calculations are found to be much shorter than those of the exact calculation. Even MCTDH calculations including sufficiently many configurations for a fully converged (quasiexact) description require over two orders of magnitude less CPU time than an exact calculation. The so‐called ‘‘natural populations’’ tha...

872 citations

Journal ArticleDOI
TL;DR: In this paper, the spectral properties of Hamilton operators perturbed by a complex absorbing potential (CAP) were studied and the errors in the calculation of complex resonance energies caused by the additional CAP and by finite basis set representation were examined.
Abstract: The spectral properties of Hamilton operators perturbed by a complex absorbing potential (CAP) are studied. For a wide class of CAPS proper eigenvalues of the perturbed Hamilton operator converge to Siegert resonance eigenvalues of the unperturbed Hamiltonian with decreasing CAP strength. The errors in the calculation of complex resonance energies caused by the additional CAP and by finite basis set representation are examined. In order to minimize these errors a scheme of approximations is provided. The application of this method allows for the use of real L2 basis sets. The feasibility and accuracy of the proposed method is demonstrated by calculations of resonance energies of a model potential and of the 2 Pi g shape resonance of N2.

490 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this article, a method for carrying out molecular dynamics simulations of processes that involve electronic transitions is proposed, where the time dependent electronic Schrodinger equation is solved self-consistently with the classical mechanical equations of motion of the atoms.
Abstract: A method is proposed for carrying out molecular dynamics simulations of processes that involve electronic transitions. The time dependent electronic Schrodinger equation is solved self‐consistently with the classical mechanical equations of motion of the atoms. At each integration time step a decision is made whether to switch electronic states, according to probabilistic ‘‘fewest switches’’ algorithm. If a switch occurs, the component of velocity in the direction of the nonadiabatic coupling vector is adjusted to conserve energy. The procedure allows electronic transitions to occur anywhere among any number of coupled states, governed by the quantum mechanical probabilities. The method is tested against accurate quantal calculations for three one‐dimensional, two‐state models, two of which have been specifically designed to challenge any such mixed classical–quantal dynamical theory. Although there are some discrepancies, initial indications are encouraging. The model should be applicable to a wide variety of gas‐phase and condensed‐phase phenomena occurring even down to thermal energies.

3,173 citations

Journal ArticleDOI
TL;DR: The new form gives a clear and convenient way to implement all basic operations efficiently, and the efficiency is demonstrated by the computation of the smallest eigenvalue of a 19-dimensional operator.
Abstract: A simple nonrecursive form of the tensor decomposition in $d$ dimensions is presented. It does not inherently suffer from the curse of dimensionality, it has asymptotically the same number of parameters as the canonical decomposition, but it is stable and its computation is based on low-rank approximation of auxiliary unfolding matrices. The new form gives a clear and convenient way to implement all basic operations efficiently. A fast rounding procedure is presented, as well as basic linear algebra operations. Examples showing the benefits of the decomposition are given, and the efficiency is demonstrated by the computation of the smallest eigenvalue of a 19-dimensional operator.

2,127 citations

Journal ArticleDOI
TL;DR: In this article, a review of the multiconfiguration time-dependent Hartree (MCTDH) method for propagating wavepackets is given, and the formal derivation, numerical implementation, and performance of the method are detailed.

2,053 citations

Journal ArticleDOI
TL;DR: In this article, the time dependence of ρ11, ρ22 and ρ12 under steady-state conditions was analyzed under a light field interaction V = -μ12Ee iωt + c.c.
Abstract: (b) Write out the equations for the time dependence of ρ11, ρ22, ρ12 and ρ21 assuming that a light field interaction V = -μ12Ee iωt + c.c. couples only levels |1> and |2>, and that the excited levels exhibit spontaneous decay. (8 marks) (c) Under steady-state conditions, find the ratio of populations in states |2> and |3>. (3 marks) (d) Find the slowly varying amplitude ̃ ρ 12 of the polarization ρ12 = ̃ ρ 12e iωt . (6 marks) (e) In the limiting case that no decay is possible from intermediate level |3>, what is the ground state population ρ11(∞)? (2 marks) 2. (15 marks total) In a 2-level atom system subjected to a strong field, dressed states are created in the form |D1(n)> = sin θ |1,n> + cos θ |2,n-1> |D2(n)> = cos θ |1,n> sin θ |2,n-1>

1,872 citations