scispace - formally typeset
Search or ask a question

Showing papers by "Hans Ertl published in 2007"


Journal ArticleDOI
TL;DR: In this article, a three-phase ac-ac sparse matrix converter with no energy storage elements and employing only 15 IGBTs, as opposed to 18 IGBT switches, was proposed.
Abstract: A novel three-phase ac-ac sparse matrix converter having no energy storage elements and employing only 15 IGBTs, as opposed to 18 IGBTs of a functionally equivalent conventional ac-ac matrix converter, is proposed. It is shown that the realization effort could be further reduced to only nine IGBTs in an ultra sparse matrix converter (USMC) in the case where only unidirectional power flow is required and the fundamental phase displacement at the input and at the output is limited to plusmnpi/6. The dependency of the voltage and current transfer ratios of the sparse matrix converters on the operating parameters is analyzed and a space vector modulation scheme is described in combination with a zero current commutation method. Finally, the sparse matrix concept is verified by simulation and experimentally using a 6.8-kW/400-V very sparse matrix converter, which is implemented with 12 IGBT switches, and USMC prototypes.

398 citations


Proceedings ArticleDOI
02 Apr 2007
TL;DR: In this article, the authors investigated the volume of the cooling system and of the main passive components for the basic forms of power electronics energy conversion in dependency of the switching frequency and determined switching frequencies minimizing the total volume.
Abstract: Power density of power electronic converters in different applications has roughly doubled every 10 years since 1970. Behind this trajectory was the continuous advancement of power semiconductor device technology allowing an increase of converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts, and passive components and wire bond interconnection technologies could be major barriers for a continuation of this trend. For identifying and quantifying such technological barriers this paper investigates the volume of the cooling system and of the main passive components for the basic forms of power electronics energy conversion in dependency of the switching frequency and determines switching frequencies minimizing the total volume. The analysis is for 5 kW rated output power, high performance air cooling, advanced power semiconductors, and single systems in all cases. A power density limit of 28 kW/dm3@300 kHz is calculated for an isolated DC-DC converter considering only transformer, output inductor and heat sink volume. For single-phase AC-DC conversion a general limit of 35 kW/dm3 results from the DC link capacitor required for buffering the power fluctuating with twice the mains frequency. For a three-phase unity power factor PWM rectifier the limit is 45 kW/dm3@810 kHz just taking into account EMI filter and cooling system. For the sparse matrix converter the limiting components are the input EMI filter and the common mode output inductor; the power density limit is 71 kW/dm3@50 kHz when not considering the cooling system. The calculated power density limits highlight the major importance of broadening the scope of research in power electronics from traditional areas like converter topologies, and modulation and control concepts to cooling systems, high frequency electromagnetics, interconnection technology, multi-functional integration, packaging and multi-domain modeling and simulation to ensure further advancement of the field along the power density trajectory.

353 citations