scispace - formally typeset
Search or ask a question
Author

Hans-Georg Kuhn

Bio: Hans-Georg Kuhn is an academic researcher from University of Regensburg. The author has contributed to research in topics: Neurogenesis & Dentate gyrus. The author has an hindex of 8, co-authored 11 publications receiving 3054 citations. Previous affiliations of Hans-Georg Kuhn include Max Delbrück Center for Molecular Medicine.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that quantification of DCX‐expressing cells allows for an accurate measurement of modulations in the rate of adult neurogenesis, and DCX is a valuable alternative to techniques currently used to measure the levels of Neurogenesis.
Abstract: Progress in the field of neurogenesis is currently limited by the lack of tools enabling fast and quantitative analysis of neurogenesis in the adult brain Doublecortin (DCX) has recently been used as a marker for neurogenesis However, it was not clear whether DCX could be used to assess modulations occurring in the rate of neurogenesis in the adult mammalian central nervous system following lesioning or stimulatory factors Using two paradigms increasing neurogenesis levels (physical activity and epileptic seizures), we demonstrate that quantification of DCX-expressing cells allows for an accurate measurement of modulations in the rate of adult neurogenesis Importantly, we excluded induction of DCX expression during physiological or reactive gliogenesis and excluded also DCX re-expression during regenerative axonal growth Our data validate DCX as a reliable and specific marker that reflects levels of adult neurogenesis and its modulation We demonstrate that DCX is a valuable alternative to techniques currently used to measure the levels of neurogenesis Importantly, in contrast to conventional techniques, analysis of neurogenesis through the detection of DCX does not require in vivo labelling of proliferating cells, thereby opening new avenues for the study of human neurogenesis under normal and pathological conditions

904 citations

Journal ArticleDOI
TL;DR: The results indicate that the acquisition of a great amount of highly abstract information may be related to a particular pattern of structural gray matter changes in particular brain areas.
Abstract: The current view regarding human long-term memory as an active process of encoding and retrieval includes a highly specific learning-induced functional plasticity in a network of multiple memory systems. Voxel-based morphometry was used to detect possible structural brain changes associated with learning. Magnetic resonance images were obtained at three different time points while medical students learned for their medical examination. During the learning period, the gray matter increased significantly in the posterior and lateral parietal cortex bilaterally. These structural changes did not change significantly toward the third scan during the semester break 3 months after the exam. The posterior hippocampus showed a different pattern over time: the initial increase in gray matter during the learning period was even more pronounced toward the third time point. These results indicate that the acquisition of a great amount of highly abstract information may be related to a particular pattern of structural gray matter changes in particular brain areas.

703 citations

Journal ArticleDOI
TL;DR: The results show that different aspects of adult hippocampal neurogenesis are differentially influenced by the genetic background.
Abstract: To address genetic influences on hippocampal neurogenesis in adult mice, we compared C57BL/6, BALB/c, CD1(ICR), and 129Sv/J mice to examine proliferation, survival, and differentiation of newborn cells in the dentate gyrus. Proliferation was highest in C57BL/6; the survival rate of newborn cells was highest in CD1. In all strains approximately 60% of surviving newborn cells had a neuronal phenotype, but 129/SvJ produced more astrocytes. Over 6 days C57BL/6 produced 0.36% of their total granule cell number of 239,000 as new neurons, BALB/c 0.30% of 242,000, CD1 (ICR) 0.32% of 351,000, and 129/SvJ 0.16% of 280,000. These results show that different aspects of adult hippocampal neurogenesis are differentially influenced by the genetic background.

638 citations

Journal ArticleDOI
TL;DR: It is concluded that programmed cell death may have an important regulatory function by eliminating supernumerous cells from neurogenic regions and may thus contribute to a self-renewal mechanism in the adult mammalian brain.

517 citations

Journal ArticleDOI
TL;DR: Efficient growth of adult NSCs in Neurobasal medium containing B27 supplement under clonal and low-density conditions in the absence of serum or conditioned medium is described, providing an important step toward the development of standardized protocols for highly efficient in vitro expansion of N SCs from the adult central nervous system.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that new neurons, as defined by these markers, are generated from dividing progenitor cells in the dentate gyrus of adult humans, indicating that the human hippocampus retains its ability to generate neurons throughout life.
Abstract: The genesis of new cells, including neurons, in the adult human brain has not yet been demonstrated. This study was undertaken to investigate whether neurogenesis occurs in the adult human brain, in regions previously identified as neurogenic in adult rodents and monkeys. Human brain tissue was obtained postmortem from patients who had been treated with the thymidine analog, bromodeoxyuridine (BrdU), that labels DNA during the S phase. Using immunofluorescent labeling for BrdU and for one of the neuronal markers, NeuN, calbindin or neuron specific enolase (NSE), we demonstrate that new neurons, as defined by these markers, are generated from dividing progenitor cells in the dentate gyrus of adult humans. Our results further indicate that the human hippocampus retains its ability to generate neurons throughout life.

6,220 citations

Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Abstract: Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide "self-repair. " Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.

4,608 citations

Journal ArticleDOI
TL;DR: It is demonstrated that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus, in amounts similar to enrichment conditions.
Abstract: Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

3,766 citations

Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: It is reported that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells.
Abstract: There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory1,2,3,4,5. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.

2,822 citations

Journal ArticleDOI
TL;DR: It is reported that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells.
Abstract: Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.

2,489 citations