scispace - formally typeset
Search or ask a question
Author

Hans Georg Mannherz

Bio: Hans Georg Mannherz is an academic researcher from Ruhr University Bochum. The author has contributed to research in topics: Actin & Actin-binding protein. The author has an hindex of 47, co-authored 163 publications receiving 10339 citations. Previous affiliations of Hans Georg Mannherz include Laboratory of Molecular Biology & University of Marburg.


Papers
More filters
Journal ArticleDOI
06 Sep 1990-Nature
TL;DR: The atomic models of the complex between rabbit skeletal muscle actin and bovine pancreatic deoxyribonuclease I both in the ATP and ADP forms have been determined byo X-ray analysis at an effective resolution of 2.8 Å and 3 Å.
Abstract: The atomic models of the complex between rabbit skeletal muscle actin and bovine pancreatic deoxyribonuclease I both in the ATP and ADP forms have been determined by X-ray analysis at an effective resolution of 2.8 A and 3A, respectively. The two structures are very similar. The actin molecule consists of two domains which can be further subdivided into two subdomains. ADP or ATP is located in the cleft between the domains with a calcium ion bound to the beta- or beta- and gamma-phosphates, respectively. The motif of a five-stranded beta sheet consisting of a beta meander and a right handed beta alpha beta unit appears in each domain suggesting that gene duplication might have occurred. These sheets have the same topology as that found in hexokinase.

1,802 citations

Journal ArticleDOI
TL;DR: It is found that lack or reduction of Dnase1 is a critical factor in the initiation of human SLE, and in agreement with earlier reports, activities in serum are found to be lower in SLE patients than in normal subjects.
Abstract: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that affects over one million people in the United States. SLE is characterized by the presence of anti-nuclear antibodies (ANA) directed against naked DNA and entire nucleosomes. It is thought that the resulting immune complexes accumulate in vessel walls, glomeruli and joints and cause a hypersensitivity reaction type III, which manifests as glomerulonephritis, arthritis and general vasculitis. The aetiology of SLE is unknown, but several studies suggest that increased liberation or disturbed clearance of nuclear DNA-protein complexes after cell death may initiate and propagate the disease. Consequently, Dnase1, which is the major nuclease present in serum, urine and secreta, may be responsible for the removal of DNA from nuclear antigens at sites of high cell turnover and thus for the prevention of SLE (refs 7-11). To test this hypothesis, we have generated Dnase1-deficient mice by gene targeting. We report here that these animals show the classical symptoms of SLE, namely the presence of ANA, the deposition of immune complexes in glomeruli and full-blown glomerulonephritis in a Dnase1-dose-dependent manner. Moreover, in agreement with earlier reports, we found Dnase1 activities in serum to be lower in SLE patients than in normal subjects. Our findings suggest that lack or reduction of Dnase1 is a critical factor in the initiation of human SLE.

759 citations

Journal ArticleDOI
19 Aug 1993-Nature
TL;DR: The structure of the segment 1 domain of gelsolin, a protein that fragments actin filaments in cells, is reported in complex with actin, providing a basis for understanding the origin of an amyloidosis caused by a gelsolini variant.
Abstract: The structure of the segment 1 domain of gelsolin, a protein that fragments actin filaments in cells, is reported in complex with actin. Segment 1 binds monomer using an apolar patch rimmed by hydrogen bonds in a cleft between actin domains. On the actin filament model it binds tangentially, disrupting only those contacts between adjacent subunits in one helical strand. The segment 1 fold is general for all segments of the gelsolin family because the conserved residues form the core of the structure. It also provides a basis for understanding the origin of an amyloidosis caused by a gelsolin variant.

549 citations

Journal ArticleDOI
TL;DR: The tissue distribution of DNase I is extended to tissues with no digestive function and to cells which are known to be susceptible to apoptosis by proposing that during apoptosis, an endonuclease indistinguishable fromDNase I gains access to the nucleus due to the breakdown of the ER and the nuclear membrane.
Abstract: Cell death by apoptosis occurs in a wide range of physiological events including repertoire selection of lymphocytes and during immune responses in vivo. A hallmark of apoptosis is the internucleosomal DNA degradation for which a Ca2+,Mg(2+)-dependent endonuclease has been postulated. This nuclease activity was extracted from both rat thymocyte and lymph node cell nuclei. When incubated with nuclei harbouring only limited amounts of endogenous nuclease activity, the ladder pattern of DNA fragments characteristic of apoptosis was induced. This extractable nucleolytic activity was immunoprecipitated with antibodies specific for rat deoxyribonuclease I (DNase I) and was inhibited by actin in complex with gelsolin segment 1, strongly pointing to the presence of a DNase I-type enzyme in the nuclear extracts. COS cells transiently transfected with the cDNA of rat parotid DNase I expressed the enzyme, and their nuclei were able to degrade their DNA into oligosome-sized fragments. PCR analysis of mRNA isolated from thymus, lymph node cells and kidney yielded a product identical in size to that from rat parotid DNase I. Immunohistochemical staining with antibodies to rat DNase I confirmed the presence of DNase I antigen in thymocytes and lymph node cells. The tissue distribution of DNase I is thus extended to tissues with no digestive function and to cells which are known to be susceptible to apoptosis. We propose that during apoptosis, an endonuclease indistinguishable from DNase I gains access to the nucleus due to the breakdown of the ER and the nuclear membrane.

545 citations

Journal ArticleDOI
01 Dec 2017-Science
TL;DR: A noncanonical mechanism for vascular occlusion based on neutrophil extracellular traps (NETs), DNA fibers released by neutrophils during inflammation are reported and provide dual host protection against deleterious effects of intravascular NETs.
Abstract: Platelet and fibrin clots occlude blood vessels in hemostasis and thrombosis. Here we report a noncanonical mechanism for vascular occlusion based on neutrophil extracellular traps (NETs), DNA fibers released by neutrophils during inflammation. We investigated which host factors control NETs in vivo and found that two deoxyribonucleases (DNases), DNase1 and DNase1-like 3, degraded NETs in circulation during sterile neutrophilia and septicemia. In the absence of both DNases, intravascular NETs formed clots that obstructed blood vessels and caused organ damage. Vascular occlusions in patients with severe bacterial infections were associated with a defect to degrade NETs ex vivo and the formation of intravascular NET clots. DNase1 and DNase1-like 3 are independently expressed and thus provide dual host protection against deleterious effects of intravascular NETs.

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells and seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity.
Abstract: The homeostasis of animals is regulated not only by the growth and differentiation of cells, but also by cell death through a process known as apoptosis. Apoptosis is mediated by members of the caspase family of proteases, and eventually causes the degradation of chromosomal DNA. A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells. CAD is a protein of 343 amino acids which carries a nuclear-localization signal; ICAD exists in a long and a short form. Recombinant ICAD specifically inhibits CAD-induced degradation of nuclear DNA and its DNase activity. When CAD is expressed with ICAD in COS cells or in a cell-free system, CAD is produced as a complex with ICAD: treatment with caspase 3 releases the DNase activity which causes DNA fragmentation in nuclei. ICAD therefore seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity; caspases activated by apoptotic stimuli then cleave ICAD, allowing CAD to enter the nucleus and degrade chromosomal DNA.

3,248 citations

Journal ArticleDOI
05 Aug 2004-Nature
TL;DR: Rapid progress towards understanding the cellular and molecular alterations that are responsible for the neuron's demise may soon help in developing effective preventative and therapeutic strategies in Alzheimer's disease.
Abstract: Slowly but surely, Alzheimer's disease (AD) patients lose their memory and their cognitive abilities, and even their personalities may change dramatically. These changes are due to the progressive dysfunction and death of nerve cells that are responsible for the storage and processing of information. Although drugs can temporarily improve memory, at present there are no treatments that can stop or reverse the inexorable neurodegenerative process. But rapid progress towards understanding the cellular and molecular alterations that are responsible for the neuron's demise may soon help in developing effective preventative and therapeutic strategies.

2,850 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

PatentDOI
28 Mar 1994-Science
TL;DR: In this article, a computer-assisted method for identifying protein sequences that fold into a known 3D structure was proposed, based on three key features of each residue's environment within the structure: (1) the total area of the residue's side-chain that is buried by other protein atoms, inaccessible to solvent; (2) the fraction of the side-chains area that is covered by polar atoms (O, N) or water; and (3) the local secondary structure.
Abstract: A computer-assisted method for identifying protein sequences that fold into a known three-dimensional structure. The method determines three key features of each residue's environment within the structure: (1) the total area of the residue's side-chain that is buried by other protein atoms, inaccessible to solvent; (2) the fraction of the side-chain area that is covered by polar atoms (O, N) or water, and (3) the local secondary structure. Based on these parameters, each residue position is categorized into an environment class. In this manner, a three-dimensional protein structure is converted into a one-dimensional environment string. A 3D structure profile table is then created containing score values that represent the frequency of finding any of the 20 common amino acids structures at each position of the environment string. These frequencies are determined from a database of known protein structures and aligned sequences.

2,530 citations