scispace - formally typeset
Search or ask a question
Author

Hans Hauner

Bio: Hans Hauner is an academic researcher from Technische Universität München. The author has contributed to research in topics: Adipose tissue & Adipocyte. The author has an hindex of 76, co-authored 497 publications receiving 23258 citations. Previous affiliations of Hans Hauner include University of Düsseldorf & University of Ulm.


Papers
More filters
Journal ArticleDOI
TL;DR: There seems to be a differential expression of pro- and antiinflammatory factors with increasing adipocyte size resulting in a shift toward dominance of proinflammatory adipokines largely as a result of a dysregulation of hypertrophic, very large cells.
Abstract: Context: Adipocytes are known to release a variety of factors that may contribute to the proinflammatory state characteristic for obesity. This secretory function is considered to provide the basis for obesity-related complications such as type 2 diabetes and atherosclerosis. Objective: To get a better insight into possible underlying mechanisms, we investigated the effect of adipocyte size on adipokine production and secretion. Design, Patients, and Main Outcome Measures: Protein secretion and mRNA expression in cultured adipocytes separated according to cell size from 30 individuals undergoing elective plastic surgery were investigated. Results: The mean adipocyte volume of the four fractions ranged from 205 ± 146 to 1.077 ± 471 pl. There were strong linear correlations for the secretion of adipokines over time. Secretion of leptin, IL-6, IL-8, TNF-α, monocyte chemoattractant protein-1, interferon-γ-inducible protein 10, macrophage inflammatory protein-1β, granulocyte colony stimulating factor, IL-1ra, ...

1,195 citations

Journal ArticleDOI
TL;DR: The data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner, and points to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-ob obesity effects.
Abstract: BackgroundGenomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive MethodsWe examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR–Cas9 genome editing in samples from patients ResultsOur data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a pot

1,097 citations

Journal ArticleDOI
TL;DR: It is concluded that adult human adipose tissue still contains precursor cells that are able to undergo adipose differentiation in vitro and this improved culture system may offer the opportunity to characterize other adipogenic factors as well as antiadipogenic factors involved in the control of adipose tissues growth.
Abstract: Stromal-vascular cells obtained from adult human subcutaneous adipose tissue were cultured in a chemically defined serum-free medium. In the presence of 0.2 nM triiodothyronine and 0.5 microM insulin, up to 25% of the cells were able to undergo terminal adipose differentiation within 18 d, as assessed by lipid accumulation and the expression of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities. Addition of cortisol resulted in a potent dose-dependent stimulation of the adipose differentiation process. Cortisol could be replaced by dexamethasone and partly by aldosterone, but not by sex steroids. The proportion of differentiated cells was dependent upon the age of the donor; when isolated from young adults, up to 70% of the stromal-vascular cells expressed the adipocyte phenotype as compared with 5-10% when the cells were isolated from the oldest subjects. An inverse relationship was observed between the age of the 27 normal-weight donors and the extent of GPDH expression after maintenance of the cells for 18 d in chemically defined medium supplemented with insulin, triiodothyronine, and cortisol (r = -0.787, P less than 0.001). It is concluded that adult human adipose tissue still contains precursor cells that are able to undergo adipose differentiation in vitro. This improved culture system may offer the opportunity to characterize other adipogenic factors as well as antiadipogenic factors involved in the control of adipose tissue growth.

667 citations

Journal ArticleDOI
TL;DR: Proinflammatory T-lymphocytes are present in visceral adipose tissue and may contribute to local inflammatory cell activation before the appearance of macrophages, suggesting that these cells could play an important role in the initiation and perpetuation of adipOSE tissue inflammation as well as the development of IR.
Abstract: Background— Adipose tissue inflammation may play a critical role in the pathogenesis of insulin resistance (IR). The present study examined the role of lymphocytes in adipose tissue inflammation and IR. Methods and Results— In a mouse model of obesity-mediated IR, high-fat diet (HFD) induced IR already after 5 weeks, which was associated with a marked T-lymphocyte infiltration in visceral adipose tissue. In contrast, recruitment of macrophages was delayed with an increase of MAC3-positive staining and F4/80 mRNA expression after 10 weeks of HFD, suggesting a dissociation of macrophage invasion into adipose tissue and IR initiation. In patients with type 2 diabetes, lymphocyte content in adipose tissue biopsies significantly correlated with waist circumference, a marker of IR. Immunohistochemical staining of human adipose tissue revealed the presence of mainly CD4-positive lymphocytes as well as macrophage infiltration. Most macrophages were HLA-DR–positive, reflecting activation through IFNγ, a cytokine released from CD4-positive lymphocytes. Conclusions— Proinflammatory T-lymphocytes are present in visceral adipose tissue and may contribute to local inflammatory cell activation before the appearance of macrophages, suggesting that these cells could play an important role in the initiation and perpetuation of adipose tissue inflammation as well as the development of IR.

664 citations

Journal ArticleDOI
TL;DR: The human cell strain described here provides an almost unlimited source of human preadipocytes with high capacity for adipose differentiation and may, therefore, represent a unique tool for studying human fat cell development and metabolism.
Abstract: OBJECTIVE: To develop and to characterize a human preadipocyte cell strain with high capacity for adipose differentiation serving as a model for studying human adipocyte development and metabolism in vitro. METHODS: Cells were derived from the stromal cells fraction of subcutaneous adipose tissue of an infant with Simpson–Golabi–Behmel syndrome (SGBS). Adipose differentiation was induced under serum-free culture conditions by exposure to 10 nM insulin, 200 pM triiodothyronine, 1 µM cortisol and 2 µM BRL 49653, a PPARγ agonist. RESULTS: During the differentiation process SGBS cells developed a gene expression pattern similar to that found in differentiating human preadipocytes with a characteristic increase in fat cell-specific mRNAs encoding lipoprotein lipase (LPL), glycero-3-phosphate dehydrogenase (GPDH), GLUT4, leptin and others. Differentiated SGBS cells exhibited an increase in glucose uptake upon insulin stimulation and in glycerol release upon catecholamine exposure. SGBS adipocytes were morphologically, biochemically and functionally identical to in vitro differentiated adipocytes from healthy subjects. However, while preadipocytes from healthy control infants rapidly lost their capacity to differentiate after a few cell divisions in culture, SGBS cells maintained their differentiation capacity over many generations: upon appropriate stimulation 95% of SGBS cells of generation 30 developed into adipocytes. A mutation in the glypican 3 gene was not detected in the patient. Thus, it remains unclear whether the molecular alteration in SGBS cells is also responsible for the high differentiation capacity and further investigations are required. CONCLUSION: The human cell strain described here provides an almost unlimited source of human preadipocytes with high capacity for adipose differentiation and may, therefore, represent a unique tool for studying human fat cell development and metabolism.

523 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
TL;DR: The data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
Abstract: Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

7,402 citations

Journal ArticleDOI
TL;DR: These predictions, based on a larger number of studies than previous estimates, indicate a growing burden of diabetes, particularly in developing countries.

6,868 citations

Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations