scispace - formally typeset
Search or ask a question
Author

Hans Hilgenkamp

Bio: Hans Hilgenkamp is an academic researcher from MESA+ Institute for Nanotechnology. The author has contributed to research in topics: Superconductivity & Josephson effect. The author has an hindex of 45, co-authored 203 publications receiving 9757 citations. Previous affiliations of Hans Hilgenkamp include National University of Singapore & German National Metrology Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show how magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3.
Abstract: The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface. Here we show how, in analogy to this remarkable interfaceinduced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance.At lowtemperatures, the sheet resistance reveals magnetic hysteresis.Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguingmany-body effects such as Ruderman–Kittel–Kasuya–Yosida interactions3, the Kondo effect4 and carrier-induced ferromagnetism in diluted magnetic semiconductors5. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.

1,355 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown how magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3.
Abstract: The electronic reconstruction at the interface between two insulating oxides can give rise to a highly-conductive interface. In analogy to this remarkable interface-induced conductivity we show how, additionally, magnetism can be induced at the interface between the otherwise nonmagnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, the Kondo effect, and carrier-induced ferromagnetism in diluted magnetic semiconductors. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise nonmagnetic materials.

1,107 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of grain boundary properties and their applications in high-Tc superconductivity and high-power and electronic device applications, as well as the theoretical models developed to describe grain boundary behavior.
Abstract: Since the first days of high-Tc superconductivity, the materials science and the physics of grain boundaries in superconducting compounds have developed into fascinating fields of research. Unique electronic properties, different from those of the grain boundaries in conventional metallic superconductors, have made grain boundaries formed by high-Tc cuprates important tools for basic science. They are moreover a key issue for electronic and large-scale applications of high-Tc superconductivity. The aim of this review is to give a summary of this broad and dynamic field. Starting with an introduction to grain boundaries and a discussion of the techniques established to prepare them individually and in a well-defined manner, the authors present their structure and transport properties. These provide the basis for a survey of the theoretical models developed to describe grain-boundary behavior. Following these discussions, the enormous impact of grain boundaries on fundamental studies is reviewed, as well as high-power and electronic device applications.

795 citations

Journal ArticleDOI
TL;DR: An EPS state is reported at the LaAlO(3)/SrTiO (3) interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a diamagnetic/paramagnetic phase below 60 K.
Abstract: Interface effects in complex oxides could have interesting technological applications. Ariando et al. demonstrate electronic phase separation and rich physics at a complex oxide interface between the two non-magnetic insulators LaAlO3 and SrTiO3.

352 citations

Journal ArticleDOI
TL;DR: A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallivities, magnetic scattering, and superconductivity.
Abstract: A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallicity, magnetic scattering, and superconductivity. The relation between the structure and the properties of the SrTiO3/LaAlO3 interface can be explained in a meaningful way by taking into account the relative contribution of three structural aspects: oxygen vacancies, structural deformations (including cation disorder), and electronic interface reconstruction. The emerging phase diagram is much richer than for related bulk oxides due to the occurrence of interface electronic reconstruction. The observation of this interface phenomenon is a display of recent advances in thin film deposition and characterization techniques, and provides an extension to the range of exceptional electronic properties of complex oxides.

265 citations


Cited by
More filters
Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
31 Aug 2007-Science
TL;DR: This work reports on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3.
Abstract: At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of ≅ 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of ≅ 10 nanometers.

2,317 citations

Journal ArticleDOI
TL;DR: This work reviews the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons and suggests that it could be possible to make both electronic and optoelectronic devices from the same material.
Abstract: The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.

2,274 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the properties of low-capacitance Josephson tunneling junctions and the practical and fundamental obstacles to their use for quantum information processing and describe how the basic physical manipulations on an ideal device can be combined to perform useful operations.
Abstract: Quantum-state engineering, i.e., active control over the coherent dynamics of suitable quantum-mechanical systems, has become a fascinating prospect of modern physics. With concepts developed in atomic and molecular physics and in the context of NMR, the field has been stimulated further by the perspectives of quantum computation and communication. Low-capacitance Josephson tunneling junctions offer a promising way to realize quantum bits (qubits) for quantum information processing. The article reviews the properties of these devices and the practical and fundamental obstacles to their use. Two kinds of device have been proposed, based on either charge or phase (flux) degrees of freedom. Single- and two-qubit quantum manipulations can be controlled by gate voltages in one case and by magnetic fields in the other case. Both kinds of device can be fabricated with present technology. In flux qubit devices, an important milestone, the observation of superpositions of different flux states in the system eigenstates, has been achieved. The Josephson charge qubit has even demonstrated coherent superpositions of states readable in the time domain. There are two major problems that must be solved before these devices can be used for quantum information processing. One must have a long phase coherence time, which requires that external sources of dephasing be minimized. The review discusses relevant parameters and provides estimates of the decoherence time. Another problem is in the readout of the final state of the system. This issue is illustrated with a possible realization by a single-electron transistor capacitively coupled to the Josephson device, but general properties of measuring devices are also discussed. Finally, the review describes how the basic physical manipulations on an ideal device can be combined to perform useful operations.

2,225 citations