scispace - formally typeset
Search or ask a question
Author

Hans-Hilger Ropers

Bio: Hans-Hilger Ropers is an academic researcher from Max Planck Society. The author has contributed to research in topics: Gene & Gene mapping. The author has an hindex of 81, co-authored 292 publications receiving 23754 citations. Previous affiliations of Hans-Hilger Ropers include University of Mainz & Radboud University Nijmegen.


Papers
More filters
Journal ArticleDOI
22 Oct 1993-Science
TL;DR: Analytical results indicate that isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.
Abstract: Genetic and metabolic studies have been done on a large kindred in which several males are affected by a syndrome of borderline mental retardation and abnormal behavior. The types of behavior that occurred include impulsive aggression, arson, attempted rape, and exhibitionism. Analysis of 24-hour urine samples indicated markedly disturbed monoamine metabolism. This syndrome was associated with a complete and selective deficiency of enzymatic activity of monoamine oxidase A (MAOA). In each of five affected males, a point mutation was identified in the eighth exon of the MAOA structural gene, which changes a glutamine to a termination codon. Thus, isolated complete MAOA deficiency in this family is associated with a recognizable behavioral phenotype that includes disturbed regulation of impulsive aggression.

1,481 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes.
Abstract: Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.

836 citations

Journal ArticleDOI
TL;DR: A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2-base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33.
Abstract: A large French family including members affected by nonspecific X-linked mental retardation, with or without autism or pervasive developmental disorder in affected male patients, has been found to have a 2–base-pair deletion in the Neuroligin 4 gene (NLGN4) located at Xp22.33. This mutation leads to a premature stop codon in the middle of the sequence of the normal protein and is thought to suppress the transmembrane domain and sequences important for the dimerization of neuroligins that are required for proper cell-cell interaction through binding to β-neurexins. As the neuroligins are mostly enriched at excitatory synapses, these results suggest that a defect in synaptogenesis may lead to deficits in cognitive development and communication processes. The fact that the deletion was present in both autistic and nonautistic mentally retarded males suggests that the NLGN4 gene is not only involved in autism, as previously described, but also in mental retardation, indicating that some types of autistic disorder and mental retardation may have common genetic origins.

737 citations

Journal ArticleDOI
TL;DR: Cowden disease (CD) (MIM 158350), or multiple hamartoma syndrome, is a rare autosomal dominant familial cancer syndrome with a high risk of breast cancer and central nervous system manifestations of CD were emphasized only recently.
Abstract: Cowden disease (CD) (MIM 158350), or multiple hamartoma syndrome, is a rare autosomal dominant familial cancer syndrome with a high risk of breast cancer. Its clinical features include a wide array of abnormalities but the main characteristics are hamartomas of the skin, breast, thyroid, oral mucosa and intestinal epithelium. The pathognomonic hamartomatous features of CD include multiple smooth facial papules, acral keratosis and multiple oral papillomas. The pathological hallmark of the facial papules are multiple trichilemmomas. Expression of the disease is variable and penetrance of the dermatological lesions is assumed to be virtually complete by the age of twenty. Central nervous system manifestations of CD were emphasized only recently and include megalencephaly, epilepsy and dysplastic gangliocytomas of the cerebellum (Lhermitte-Duclos disease, LDD). Early diagnosis is important since female patients with CD are at risk of developing breast cancer. Other lesions include benign and malignant disease of the thyroid, intestinal polyps and genitourinary abnormalities. To localize the gene for CD, an autosomal genome scan was performed. A total of 12 families were examined, resulting in a maximum lod score of 8.92 at theta = 0.02 with the marker D10S573 located on chromosome 10q22-23.

622 citations

Journal ArticleDOI
TL;DR: The remarkable recent progress in research into the genetic and molecular causes of mental retardation, its promise for understanding neural function, learning and memory, and the implications of this research for health care are reviewed.
Abstract: Genetic factors have an important role in the aetiology of mental retardation. However, their contribution is often underestimated because in developed countries, severely affected patients are mainly sporadic cases and familial cases are rare. X-chromosomal mental retardation is the exception to this rule, and this is one of the reasons why research into the genetic and molecular causes of mental retardation has focused almost entirely on the X-chromosome. Here, we review the remarkable recent progress in this field, its promise for understanding neural function, learning and memory, and the implications of this research for health care.

576 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Next-generation DNA sequencing has the potential to dramatically accelerate biological and biomedical research, by enabling the comprehensive analysis of genomes, transcriptomes and interactomes to become inexpensive, routine and widespread, rather than requiring significant production-scale efforts.
Abstract: DNA sequence represents a single format onto which a broad range of biological phenomena can be projected for high-throughput data collection. Over the past three years, massively parallel DNA sequencing platforms have become widely available, reducing the cost of DNA sequencing by over two orders of magnitude, and democratizing the field by putting the sequencing capacity of a major genome center in the hands of individual investigators. These new technologies are rapidly evolving, and near-term challenges include the development of robust protocols for generating sequencing libraries, building effective new approaches to data-analysis, and often a rethinking of experimental design. Next-generation DNA sequencing has the potential to dramatically accelerate biological and biomedical research, by enabling the comprehensive analysis of genomes, transcriptomes and interactomes to become inexpensive, routine and widespread, rather than requiring significant production-scale efforts.

4,458 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: In this paper, a large sample of male children from birth to adulthood was studied to determine why some children who are maltreated grow up to develop antisocial behavior, whereas others do not.
Abstract: We studied a large sample of male children from birth to adulthood to determine why some children who are maltreated grow up to develop antisocial behavior, whereas others do not. A functional polymorphism in the gene encoding the neurotransmitter-metabolizing enzyme monoamine oxidase A (MAOA) was found to moderate the effect of maltreatment. Maltreated children with a genotype conferring high levels of MAOA expression were less likely to develop antisocial problems. These findings may partly explain why not all victims of maltreatment grow up to victimize others, and they provide epidemiological evidence that genotypes can moderate children's sensitivity to environmental insults.

4,151 citations