scispace - formally typeset
Search or ask a question
Author

Hans-Jürgen Bandelt

Bio: Hans-Jürgen Bandelt is an academic researcher from University of Hamburg. The author has contributed to research in topics: Haplogroup & Chordal graph. The author has an hindex of 68, co-authored 178 publications receiving 28234 citations. Previous affiliations of Hans-Jürgen Bandelt include University of Oldenburg & University of Glasgow.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that the MJ method does not resolve ties.
Abstract: Reconstructing phylogenies from intraspecific data (such as human mitochondrial DNA variation) is often a challenging task because of large sample sizes and small genetic distances between individuals. The resulting multitude of plausible trees is best expressed by a network which displays alternative potential evolutionary paths in the form of cycles. We present a method ("median joining" [MJ]) for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that our MJ method does not resolve ties. The MJ method is hence closely related to the earlier approach of Foulds, Hendy, and Penny for estimating MP trees but can be adjusted to the level of homoplasy by setting a parameter epsilon. Unlike our earlier reduced median (RM) network method, MJ is applicable to multistate characters (e.g., amino acid sequences). An additional feature is the speed of the implemented algorithm: a sample of 800 worldwide mtDNA hypervariable segment I sequences requires less than 3 h on a Pentium 120 PC. The MJ method is demonstrated on a Tibetan mitochondrial DNA RFLP data set.

9,937 citations

Journal ArticleDOI
TL;DR: There has been substantial back-migration into the Near East, there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, and a way to account for multiple dispersals of common sequence types is suggested.
Abstract: Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to the colonization of Europe, to estimate the proportion of modern lineages whose ancestors arrived during each major phase of settlement. To estimate the Palaeolithic and Neolithic contributions to European mtDNA diversity more accurately than was previously achievable, we have now extended the Near Eastern, European, and northern-Caucasus databases to 1,234, 2,804, and 208 samples, respectively. Both back-migration into the source population and recurrent mutation in the source and derived populations represent major obstacles to this approach. We have developed phylogenetic criteria to take account of both these factors, and we suggest a way to account for multiple dispersals of common sequence types. We conclude that (i) there has been substantial back-migration into the Near East, (ii) the majority of extant mtDNA lineages entered Europe in several waves during the Upper Palaeolithic, (iii) there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, from which derives the largest fraction of surviving lineages, and (iv) the immigrant Neolithic component is likely to comprise less than one-quarter of the mtDNA pool of modern Europeans.

965 citations

Journal Article
TL;DR: Reappraising mtDNA control region sequences from aboriginal Siberians and Native Americans confirms in agreement with linguistic, archaeological and climatic evidence that the major wave of migration brought one population, ancestral to the Amerinds, from northeastern Siberia to America 20,000-25,000 years ago.
Abstract: The timing and number of prehistoric migrations involved in the settlement of the American continent is subject to intense debate. Here, we reanalyze Native American control region mtDNA data and demonstrate that only an appropriate phylogenetic analysis accompanied by an appreciation of demographic factors allows us to discern different migrations and to estimate their ages. Reappraising 574 mtDNA control region sequences from aboriginal Siberians and Native Americans, we confirm in agreement with linguistic, archaeological and climatic evidence that (i) the major wave of migration brought one population, ancestral to the Amerinds, from northeastern Siberia to America 20,000-25,000 years ago and (ii) a rapid expansion of a Beringian source population took place at the end of the Younger Dryas glacial phase approximately 11,300 years ago, ancestral to present Eskimo and Na-Dene populations.

729 citations

Journal ArticleDOI
13 May 2005-Science
TL;DR: It is shown that mitochondrial DNA variation in isolated “relict” populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia.
Abstract: A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated “relict” populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia. There was an early offshoot, leading ultimately to the settlement of the Near East and Europe, but the main dispersal from India to Australia ∼65,000 years ago was rapid, most likely taking only a few thousand years.

696 citations

Journal ArticleDOI
TL;DR: The mtDNA pool of present-day Brazilians clearly reflects the imprints of the early Portuguese colonization process (involving directional mating), as well as the recent immigrant waves (from Europe) of the last century.
Abstract: We have analyzed 247 Brazilian mtDNAs for hypervariable segment (HVS)–I and selected restriction fragment-length–polymorphism sites, to assess their ancestry in different continents. The total sample showed nearly equal amounts of Native American, African, and European matrilineal genetic contribution but with regional differences within Brazil. The mtDNA pool of present-day Brazilians clearly reflects the imprints of the early Portuguese colonization process (involving directional mating), as well as the recent immigrant waves (from Europe) of the last century. The subset of 99 mtDNAs from the southeastern region encompasses nearly all mtDNA haplogroups observed in the total Brazilian sample; for this regional subset, HVS-II was analyzed, providing, in particular, some novel details of the African mtDNA phylogeny.

650 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A method for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that the MJ method does not resolve ties.
Abstract: Reconstructing phylogenies from intraspecific data (such as human mitochondrial DNA variation) is often a challenging task because of large sample sizes and small genetic distances between individuals. The resulting multitude of plausible trees is best expressed by a network which displays alternative potential evolutionary paths in the form of cycles. We present a method ("median joining" [MJ]) for constructing networks from recombination-free population data that combines features of Kruskal's algorithm for finding minimum spanning trees by favoring short connections, and Farris's maximum-parsimony (MP) heuristic algorithm, which sequentially adds new vertices called "median vectors", except that our MJ method does not resolve ties. The MJ method is hence closely related to the earlier approach of Foulds, Hendy, and Penny for estimating MP trees but can be adjusted to the level of homoplasy by setting a parameter epsilon. Unlike our earlier reduced median (RM) network method, MJ is applicable to multistate characters (e.g., amino acid sequences). An additional feature is the speed of the implemented algorithm: a sample of 800 worldwide mtDNA hypervariable segment I sequences requires less than 3 h on a Pentium 120 PC. The MJ method is demonstrated on a Tibetan mitochondrial DNA RFLP data set.

9,937 citations

Journal ArticleDOI
TL;DR: This article reviews the terminology used for phylogenetic networks and covers both split networks and reticulate networks, how they are defined, and how they can be interpreted and outlines the beginnings of a comprehensive statistical framework for applying split network methods.
Abstract: The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evolution proceeds in a tree-like manner, analysis of the data may not be best served by using methods that enforce a tree structure but rather by a richer visualization of the data to evaluate its properties, at least as an essential first step. Thus, phylogenetic networks should be employed when reticulate events such as hybridization, horizontal gene transfer, recombination, or gene duplication and loss are believed to be involved, and, even in the absence of such events, phylogenetic networks have a useful role to play. This article reviews the terminology used for phylogenetic networks and covers both split networks and reticulate networks, how they are defined, and how they can be interpreted. Additionally, the article outlines the beginnings of a comprehensive statistical framework for applying split network methods. We show how split networks can represent confidence sets of trees and introduce a conservative statistical test for whether the conflicting signal in a network is treelike. Finally, this article describes a new program, SplitsTree4, an interactive and comprehensive tool for inferring different types of phylogenetic networks from sequences, distances, and trees.

7,273 citations

Journal ArticleDOI
22 Jun 2000-Nature
TL;DR: The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help understanding of how organisms were so affected.
Abstract: Global climate has fluctuated greatly during the past three million years, leading to the recent major ice ages. An inescapable consequence for most living organisms is great changes in their distribution, which are expressed differently in boreal, temperate and tropical zones. Such range changes can be expected to have genetic consequences, and the advent of DNA technology provides most suitable markers to examine these. Several good data sets are now available, which provide tests of expectations, insights into species colonization and unexpected genetic subdivision and mixture of species. The genetic structure of human populations may be viewed in the same context. The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help our understanding of how organisms were so affected.

6,341 citations

Journal ArticleDOI
TL;DR: The nature and extent of reported declines, and the potential drivers of pollinator loss are described, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them are reviewed.
Abstract: Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.

4,608 citations