scispace - formally typeset
Search or ask a question
Author

Hans Knutsson

Other affiliations: Rockefeller University, Lund University, Harvard University  ...read more
Bio: Hans Knutsson is an academic researcher from Linköping University. The author has contributed to research in topics: Filter (signal processing) & Tensor. The author has an hindex of 42, co-authored 360 publications receiving 10782 citations. Previous affiliations of Hans Knutsson include Rockefeller University & Lund University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the most common software packages for fMRI analysis (SPM, FSL, AFNI) can result in false-positive rates of up to 70%.
Abstract: The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

2,946 citations

Book
31 Dec 1994
TL;DR: Signal Processing for Computer Vision is the first book to give a unified treatment of representation and filtering of higher order data, such as vectors and tensors in multidimensional space.
Abstract: From the Publisher: Signal Processing for Computer Vision provides a unique and thorough treatment of the signal processing aspects of filters and operators for low level computer vision. Computer Vision has progressed considerably over the years. From methods only applicable to simple images, it has developed to deal with increasingly complex scenes, volumes and time sequences. A substantial part of this book deals with the problem of designing models that can be used for several purposes with computer vision. These partial models have some general properties of invariance generation and generality in model generation. Signal Processing for Computer Vision is the first book to give a unified treatment of representation and filtering of higher order data, such as vectors and tensors in multidimensional space. Included is a systematic organisation for the implementation of complex models in a hierarchical modular structure and novel material on adaptive filtering using tensor data representation. Signal Processing for Computer Vision is intended for final year undergraduate and graduate students as well as engineers and researchers in the field of computer vision and image processing.

796 citations

Book ChapterDOI
01 May 2011
TL;DR: It is shown how higher order tensors can be estimated using a generalization of the same simple formulation as a number of known structure tensor algorithms by formulating them in monomial filter set terms.
Abstract: Estimation of local spatial structure has a long history and numerous analysis tools have been developed. A concept that is widely recognized as fundamental in the analysis is the structure tensor. However, precisely what it is taken to mean varies within the research community. We present a new method for structure tensor estimation which is a generalization of many of it's predecessors. The method uses filter sets having Fourier directional responses being monomials of the normalized frequency vector, one odd order sub-set and one even order sub-set. It is shown that such filter sets allow for a particularly simple way of attaining phase invariant, positive semi-definite, local structure tensor estimates. We continue to compare a number of known structure tensor algorithms by formulating them in monomial filter set terms. In conclusion we show how higher order tensors can be estimated using a generalization of the same simple formulation.

380 citations

Journal ArticleDOI
TL;DR: A microstructure model, the diffusion tensor distribution (DTD) model, is proposed, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors.

268 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
01 Jan 2004
TL;DR: This book provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Abstract: Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.

6,050 citations

Journal Article
TL;DR: In this article, a convolution-backprojection formula is deduced for direct reconstruction of a three-dimensional density function from a set of two-dimensional projections, which has useful properties, including errors that are relatively small in many practical instances and a form that leads to convenient computation.
Abstract: A convolution-backprojection formula is deduced for direct reconstruction of a three-dimensional density function from a set of two-dimensional projections. The formula is approximate but has useful properties, including errors that are relatively small in many practical instances and a form that leads to convenient computation. It reduces to the standard fan-beam formula in the plane that is perpendicular to the axis of rotation and contains the point source. The algorithm is applied to a mathematical phantom as an example of its performance.

5,356 citations

Journal ArticleDOI
TL;DR: In this article, a convolution-backprojection formula is deduced for direct reconstruction of a three-dimensional density function from a set of two-dimensional projections, which has useful properties, including errors that are relatively small in many practical instances and a form that leads to convenient computation.
Abstract: A convolution-backprojection formula is deduced for direct reconstruction of a three-dimensional density function from a set of two-dimensional projections. The formula is approximate but has useful properties, including errors that are relatively small in many practical instances and a form that leads to convenient computation. It reduces to the standard fan-beam formula in the plane that is perpendicular to the axis of rotation and contains the point source. The algorithm is applied to a mathematical phantom as an example of its performance.

5,329 citations