scispace - formally typeset
Search or ask a question
Author

Hans Kosina

Bio: Hans Kosina is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Monte Carlo method & Electron mobility. The author has an hindex of 36, co-authored 382 publications receiving 5409 citations. Previous affiliations of Hans Kosina include Arizona State University & Samsung.


Papers
More filters
Journal ArticleDOI
TL;DR: This work discusses the essential problem of random background charge and present possible solutions of SIMON, a single electron tunnel device and circuit simulator that is based on a Monte Carlo method.
Abstract: SIMON is a single electron tunnel device and circuit simulator that is based on a Monte Carlo method. It allows transient and stationary simulation of arbitrary circuits consisting of tunnel junctions, capacitors, and voltage sources of three kinds: constant, piecewise linearly time dependent, and voltage controlled. Cotunneling can be simulated either with a plain Monte Carlo method or with a combination of the Monte Carlo and master equation approach. A graphic user interface allows the quick and easy design of circuits with single-electron tunnel devices. Furthermore, as an example of the usage of SIMON, we discuss the essential problem of random background charge and present possible solutions.

373 citations

Journal ArticleDOI
29 Apr 2003
TL;DR: A detailed review of various transport models proposed which account for the average carrier energy or temperature, highlighting the differences and similarities between the models, and shed some light on the critical issues associated with higher order transport models.
Abstract: Since Stratton published his famous paper four decades ago, various transport models have been proposed which account for the average carrier energy or temperature in one way or another. The need for such transport models arose because the traditionally used drift-diffusion model cannot capture nonlocal effects which gained increasing importance in modern miniaturized semiconductor devices. In the derivation of these models from Boltzmann's transport equation, several assumptions have to be made in order to obtain a tractable equation set. Although these assumptions may differ significantly, the resulting final models show various similarities, which has frequently led to confusion. We give a detailed review on this subject, highlighting the differences and similarities between the models, and we shed some light on the critical issues associated with higher order transport models.

259 citations

Journal ArticleDOI
TL;DR: In this article, a model capturing the effect of general strain on the electron effective masses and band-edge energies of the lowest conduction band of silicon was developed, and analytical expressions for the effective mass change induced by shear strain and valley shifts/splittings were derived using a degenerate kldrp theory at the zone-boundary X point.
Abstract: A model capturing the effect of general strain on the electron effective masses and band-edge energies of the lowest conduction band of silicon is developed. Analytical expressions for the effective mass change induced by shear strain and valley shifts/splittings are derived using a degenerate kldrp theory at the zone-boundary X point. Good agreement to numerical band- structure calculations using the nonlocal empirical pseudopotential method with spin-orbit interactions is observed. The model is validated by calculating the bulk electron mobility under general strain with a Monte Carlo technique using the full-band structure and the proposed analytical model for the band structure. Finally, the impact of strain on the inversion-layer mobility of electrons is discussed.

182 citations

Journal ArticleDOI
TL;DR: In this paper, a particle model is associated with the Wigner-quantum transport, and the sign is taken into account in the evaluation of the physical averages, which is useful if the physical quantities do not vary over several orders of magnitude inside a device.
Abstract: Small semiconductor devices can be separated into regions where the electron transport has classical character, neighboring with regions where the transport requires a quantum description. The classical transport picture is associated with Boltzmann-like particles that evolve in the phase-space defined by the wave vector and real space coordinates. The evolution consists of consecutive processes of drift over Newton trajectories and scattering by phonons. In the quantum regions, a convenient description of the transport is given by the Wigner-function formalism. The latter retains most of the basic classical notions, particularly, the concepts for phase-space and distribution function, which provide the physical averages. In this work we show that the analogy between classical and Wigner transport pictures can be even closer. A particle model is associated with the Wigner-quantum transport. Particles are associated with a sign and thus become positive and negative. The sign is the only property of the particles related to the quantum information. All other aspects of their behavior resemble Boltzmann-like particles. The sign is taken into account in the evaluation of the physical averages. The sign has a physical meaning because positive and negative particles that meet in the phase space annihilate one another. The Wigner and Boltzmann transport pictures are explained in a unified way by the processes drift, scattering, generation, and recombination of positive and negative particles. The model ensures a seamless transition between the classical and quantum regions. A stochastic method is derived and applied to simulation of resonant-tunneling diodes. Our analysis shows that the method is useful if the physical quantities do not vary over several orders of magnitude inside a device.

169 citations

Journal ArticleDOI
TL;DR: It is shown that transport takes place through two phases so that high conductivity is achieved in the grains, and high Seebeck coefficient by the grain boundaries, which together with the drastic reduction in the thermal conductivity due to boundary scattering could lead to a significant increase of the figure of merit ZT.
Abstract: A large thermoelectric power factor in heavily boron-doped p-type nanograined Si with grain sizes ~30 nm and grain boundary regions of ~2 nm is reported. The reported power factor is ~5 times higher than in bulk Si. It originates from the surprising observation that for a specific range of carrier concentrations, the electrical conductivity and Seebeck coefficient increase simultaneously. The two essential ingredients for this observation are nanocrystallinity and extremely high boron doping levels. This experimental finding is interpreted within a theoretical model that considers both electron and phonon transport within the semiclassical Boltzmann approach. It is shown that transport takes place through two phases so that high conductivity is achieved in the grains, and high Seebeck coefficient by the grain boundaries. This together with the drastic reduction in the thermal conductivity due to boundary scattering could lead to a significant increase of the figure of merit ZT. This is one of the rare observations of a simultaneous increase in the electrical conductivity and Seebeck coefficient, resulting in enhanced thermoelectric power factor.

128 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This work reviews the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons and suggests that it could be possible to make both electronic and optoelectronic devices from the same material.
Abstract: The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.

2,274 citations

01 Jan 2011

2,117 citations