scispace - formally typeset
Search or ask a question
Author

Hans-Olov Adami

Bio: Hans-Olov Adami is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Population & Breast cancer. The author has an hindex of 145, co-authored 908 publications receiving 83473 citations. Previous affiliations of Hans-Olov Adami include Karolinska University Hospital & Harvard University.


Papers
More filters
Journal ArticleDOI
Eugenia E. Calle1, Clark W. Heath1, R. J. Coates2, Jonathan M. Liff2  +191 moreInstitutions (45)
TL;DR: Of the many factors examined that might affect the relation between breast cancer risk and use of HRT, only a woman's weight and body-mass index had a material effect: the increase in the relative risk of breast cancer diagnosed in women using HRT and associated with long durations of use in current and recent users was greater for women of lower than of higher weight or body- mass index.

2,343 citations

Journal ArticleDOI
TL;DR: Radical prostatectomy was associated with a reduction in the rate of death from prostate cancer, and men with extracapsular tumor growth may benefit from adjuvant local or systemic treatment.
Abstract: BACKGROUND: In 2008, we reported that radical prostatectomy, as compared with watchful waiting, reduces the rate of death from prostate cancer. After an additional 3 years of follow-up, we now repo ...

1,868 citations

Journal ArticleDOI
TL;DR: Close surveillance and perhaps even prophylactic proctocolectomy should be recommended for patients given a diagnosis of pancolitis, especially those who are less than 15 years of age at diagnosis.
Abstract: Background The risk of colorectal cancer is increased among patients with ulcerative colitis. The magnitude of this increase in risk and the effects of the length of follow-up, the extent of disease at diagnosis, and age at diagnosis vary substantially in different studies. Methods To provide accurate estimates of the risk of colorectal cancer among patients with ulcerative colitis, we studied a population-based cohort of 3117 patients given a diagnosis of ulcerative colitis from 1922 through 1983 who were followed up through 1984. Results Ninety-two cases of colorectal cancer occurred in 91 patients. As compared with the expected incidence, the incidence of colorectal cancer in the cohort was increased (standardized incidence ratio [ratio of observed to expected cases] = 5.7; 95 percent confidence interval, 4.6 to 7.0). Less extensive disease at diagnosis was associated with a lower risk; for patients with ulcerative proctitis, the standardized incidence ratio was 1.7 (95 percent confidence interval, 0.8 to 3.2); for those with left-sided colitis, 2.8 (95 percent confidence interval, 1.6 to 4.4); and for those with pancolitis (extensive colitis, or inflammation of the entire colon), 14.8 (95 percent confidence interval, 11.4 to 18.9). Age at diagnosis and the extent of disease at diagnosis were strong and independent risk factors for colorectal cancer. For each increase in age group at diagnosis (less than 15 years, 15 to 29 years, 30 to 39 years, 40 to 49 years, 50 to 59 years, and greater than or equal to 60 years), the relative risk of colorectal cancer, adjusted for the extent of disease at diagnosis, decreased by about half (adjusted standardized incidence ratio = 0.51; 95 percent confidence interval, 0.46 to 0.56). The absolute risk of colorectal cancer 35 years after diagnosis was 30 percent for patients with pancolitis at diagnosis and 40 percent for those given this diagnosis at less than 15 years of age. Conclusions Close surveillance and perhaps even prophylactic proctocolectomy should be recommended for patients given a diagnosis of pancolitis, especially those who are less than 15 years of age at diagnosis.

1,701 citations

Journal ArticleDOI
TL;DR: Breast cancer and hormonal contraceptives: Collaborative reanalysis of individual data on 53297 women with breast cancer and 100239 women without breast cancer from 54 epidemiological studies as mentioned in this paper.

1,253 citations

Journal ArticleDOI
TL;DR: There is a clear need for large-scale, population-based molecular epidemiologic studies to elucidate how environmental, viral, and genetic factors interact in both the development and the prevention of this disease.
Abstract: Nasopharyngeal carcinoma (NPC) has a unique and complex etiology that is not completely understood. Although NPC is rare in most populations, it is a leading form of cancer in a few well-defined populations, including natives of southern China, Southeast Asia, the Arctic, and the Middle East/North Africa. The distinctive racial/ethnic and geographic distribution of NPC worldwide suggests that both environmental factors and genetic traits contribute to its development. This review aims to summarize the current knowledge regarding the epidemiology of NPC and to propose new avenues of research that could help illuminate the causes and ultimately the prevention of this remarkable disease. Well-established risk factors for NPC include elevated antibody titers against the Epstein-Barr virus, consumption of salt-preserved fish, a family history of NPC, and certain human leukocyte antigen class I genotypes. Consumption of other preserved foods, tobacco smoking, and a history of chronic respiratory tract conditions may be associated with elevated NPC risk, whereas consumption of fresh fruits and vegetables and other human leukocyte antigen genotypes may be associated with decreased risk. Evidence for a causal role of various inhalants, herbal medicines, and occupational exposures is inconsistent. Other than dietary modification, no concrete preventive measures for NPC exist. Given the unresolved gaps in understanding of NPC, there is a clear need for large-scale, population-based molecular epidemiologic studies to elucidate how environmental, viral, and genetic factors interact in both the development and the prevention of this disease.

1,165 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Journal ArticleDOI
TL;DR: There are striking variations in the risk of different cancers by geographic area, most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
Abstract: Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.

17,730 citations