scispace - formally typeset
Search or ask a question
Author

Hans-Peter Lenhof

Other affiliations: Max Planck Society
Bio: Hans-Peter Lenhof is an academic researcher from Saarland University. The author has contributed to research in topics: Macromolecular docking & Autoantibody. The author has an hindex of 44, co-authored 164 publications receiving 6046 citations. Previous affiliations of Hans-Peter Lenhof include Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , a joint regression and classification approach called SAURON-RF (SimultAneoUs Regression and classificatiON Random Forests) is proposed for the prediction of optimal anti-cancer therapies.
Abstract: Machine learning methods trained on cancer cell line panels are intensively studied for the prediction of optimal anti-cancer therapies. While classification approaches distinguish effective from ineffective drugs, regression approaches aim to quantify the degree of drug effectiveness. However, the high specificity of most anti-cancer drugs induces a skewed distribution of drug response values in favor of the more drug-resistant cell lines, negatively affecting the classification performance (class imbalance) and regression performance (regression imbalance) for the sensitive cell lines. Here, we present a novel approach called SimultAneoUs Regression and classificatiON Random Forests (SAURON-RF) based on the idea of performing a joint regression and classification analysis. We demonstrate that SAURON-RF improves the classification and regression performance for the sensitive cell lines at the expense of a moderate loss for the resistant ones. Furthermore, our results show that simultaneous classification and regression can be superior to regression or classification alone.

2 citations

Book ChapterDOI
TL;DR: This work considers the following problem: Preprocess P such that for any query point q, the points of P in the translate C + q can be retrieved efficiently and has time complexity O(n2).
Abstract: Let P be a set of n points in the Euclidean plane and let C be a convex figure. In 1985, Chazelle and Edelsbrunner presented an algorithm, which preprocesses P such that for any query point q, the points of P in the translate C+q can be retrieved efficiently. Assuming that constant time suffices for deciding the inclusion of a point in C, they provided a space and query time optimal solution. Their algorithm uses O(n) space. A query with output size k can be solved in O(log n+k) time. The preprocessing step of their algorithm, however, has time complexity O(n2). We show that the usage of a new construction method for layers reduces the preprocessing time to O(n log n). We thus provide the first space, query time and preprocessing time optimal solution for this class of point retrieval problems. Besides, we present two new dynamic data structures for these problems. The first dynamic data structure allows on-line insertions and deletions of points in O((log n)2) time. In this dynamic data structure, a query with output size k can be solved in O(log n+k(log n)2) time. The second dynamic data structure, which allows only semi-online updates, has O((log n)2) amortized update time and O(log n+k) query time.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
Abstract: Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.

13,102 citations

Journal ArticleDOI
TL;DR: These revisions simplify the McDonald Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.
Abstract: New evidence and consensus has led to further revision of the McDonald Criteria for diagnosis of multiple sclerosis. The use of imaging for demonstration of dissemination of central nervous system lesions in space and time has been simplified, and in some circumstances dissemination in space and time can be established by a single scan. These revisions simplify the Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.

8,883 citations

Journal ArticleDOI
TL;DR: A new method for multiple sequence alignment that provides a dramatic improvement in accuracy with a modest sacrifice in speed as compared to the most commonly used alternatives but avoids the most serious pitfalls caused by the greedy nature of this algorithm.

6,727 citations

Journal ArticleDOI
TL;DR: A biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
Abstract: A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era

6,282 citations

Journal ArticleDOI
TL;DR: A significant update to one of the tools in this domain called Enrichr, a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries is presented.
Abstract: Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.

6,201 citations