scispace - formally typeset
Search or ask a question
Author

Hans Preusting

Bio: Hans Preusting is an academic researcher from University of Groningen. The author has contributed to research in topics: Pseudomonas oleovorans & Chemostat. The author has an hindex of 11, co-authored 12 publications receiving 1495 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the intermediate 3-Hydroxy fatty acids can also be polymerized to intracellular poly-(R)-3-hydroxyalkanoates (PHAs) when the medium contains limiting amounts of essential elements, such as nitrogen.
Abstract: Pseudomonas oleovorans grows on C(6) to C(12)n-alkanes and 1-alkenes. These substrates are oxidized to the corresponding fatty acids, which are oxidized further via the beta-oxidation pathway, yielding shorter fatty acids which have lost one or more C(2) units. P. oleovorans normally utilizes beta-oxidation pathway intermediates for growth, but in this paper we show that the intermediate 3-hydroxy fatty acids can also be polymerized to intracellular poly-(R)-3-hydroxyalkanoates (PHAs) when the medium contains limiting amounts of essential elements, such as nitrogen. The monomer composition of these polyesters is a reflection of the substrates used for growth of P. oleovorans. The largest monomer found in PHAs always contained as many C atoms as did the n-alkane used as a substrate. Monomers which were shorter by one or more C(2) units were also observed. Thus, for C-even substrates, only C-even monomers were found, the smallest being (R)-3-hydroxyhexanoate. For C-odd substrates, only C-odd monomers were found, with (R)-3-hydroxyheptanoate as the smallest monomer. 1-Alkenes were also incorporated into PHAs, albeit less efficiently and with lower yields than n-alkanes. These PHAs contained both saturated and unsaturated monomers, apparently because the 1-alkene substrates could be oxidized to carboxylic acids at either the saturated or the unsaturated ends. Up to 55% of the PHA monomers contained terminal double bonds when P. oleovorans was grown on 1-alkenes. The degree of unsaturation of PHAs could be modulated by varying the ratio of alkenes to alkanes in the growth medium. Since 1-alkenes were also shortened before being polymerized, as was the case for n-alkanes, copolymers which varied with respect to both monomer chain length and the percentage of terminal double bonds were formed during nitrogen-limited growth of P. oleovorans on 1-alkenes. Such polymers are expected to be useful for future chemical modifications.

714 citations

Journal ArticleDOI
TL;DR: In this paper, a n-alcane (de l'hexane au decane) on obtient des melanges de poly(3-hydroxy alcanoates) allant du poly(1-decene ou du 1-octene), on the other hand, poly(2-hexane ou decane).
Abstract: Lorsque le substrat est un n-alcane (de l'hexane au decane) on obtient des melanges de poly(3-hydroxy alcanoates) allant du poly(3-hydroxybutyrate) au poly(3-hydroxy decanoate). En partant du 1-decene ou du 1-octene, on obtient des melanges allant du poly(3-hydroxy hexenoate) au poly(3-hydroxy decenoate)

143 citations

Journal ArticleDOI
01 May 1994-Polymer
TL;DR: The first microbially produced biodegradable poly(R)-3-hydroxyalkanoate (PHAs) polyester was presented in this paper, where the unsaturated pendent groups were incorporated in the polymer by tailoring the carbon source for biosynthesis.

133 citations

Journal ArticleDOI
TL;DR: This study aimed at an efficient production of poly(3‐hydroxyalkanoates) by growing P. oleovorans to high cell densities in fed‐batch cultures.
Abstract: Pseudomonas oleovorans is able to accumulate poly(3-hydroxyalkanoates) (PHAs) under conditions of excess n-alkanes, which serve as sole energy and carbon source, and limitation of an essential nutrient such as ammonium. In this study we aimed at an efficient production of these PHAs by growing P. oleovorans to high cell densities in fed-batch cultures.To examine the efficiency of our reactor system, P. oleovorans was first grown in batch cultures using n-octane as growth substrate and ammonia water for pH regulation to prevent ammonium limiting conditions. When cell growth ceased due to oxygen limiting conditions, a maximum cell density of 27 g .L(-1) dry weight was obtained. When the growth temperature was decreased from the optimal temperature of 30 degrees -18 degrees C, cell growth continued to a final cell density of 35 g . L(-1) due to a lower oxygen demand of the cells at this lower incubation temperature.To quantify mass transfer rates in our reactor system, the volumetric oxygen transfer coefficient (k(L)a) was determined during growth of P. oleovorans on n-octane. Since the stirrer speed and airflow were increased during growth of the organism, the k(L)a also increased, reaching a constant value of 0.49 s(-1) at maximum airflow and stirrer speed of 2 L . min(-1) and 2500 rpm, respectively. This k(L)a value suggests that oxygen transfer is very efficient in our stirred tank reactor.Using these conditions of high oxygen transfer rates, PHA production by P. oleovorans in fed-batch cultures was studied. The cells were first grown batchwise to a density of 6 g . L(-1), after which a nutrient feed, consisting of (NH(4))(2)SO(4) and MgSO(4), was started. The limiting nutrient ammonium was added at a constant rate of 0.23 g NH(4) (+) per hour, and when after 38 h the feed was stopped, a biomass concentration of 37.1 g . L(-1) was obtained. The Cellular PHA content was 33% (w/w), which is equal to a final PHA yield of 12.1 g . L(-1) and an overall PHA productivity of 0.25 g PHA produced per liter medium per hour.

104 citations

Journal ArticleDOI
TL;DR: Although PHA synthesis generally begins only after an essential nutrient such as N, P, S or Mg becomes limiting, at least one strain is identified that begins producing PHA during the exponential growth phase, and the PHAs formed were essentially indistinguishable from wild-type PHAs with respect to their thermal characteristics.
Abstract: We have studied the accumulation kinetics and physical characteristics of the poly(3-hydroxyalkanoates) (PHAs) formed by several Pseudomonas strains, mutants and recombinants. Although PHA synthesis generally begins only after an essential nutrient such as N, P, S or Mg becomes limiting, we have identified at least one strain (P. putida KT2442) that begins producing PHA during the exponential growth phase. This PHA is chemically and physically identical to that produced by P. oleovorans GPol, the strain in which we first identified PHA. Analysis of the PHA formed by a mutant strain defective in PHA degradation (P. oleovorans GPo500) revealed that the molecular mass (Mw), the monomer composition and thermal characteristics were similar to that of the PHA of the wild-type parent strain P. oleovorans GPo1. The pha locus of P. oleovorans encodes enzymes that are involved in PHA biosynthesis and degradation. It has been subcloned to study the two PHA polymerases separately in a PHA− mutant (GPp104) derived from P. putida KT2442. The recombinant strains accumulated lower PHA levels than the wild-type strains, and the Mw of these polymers were lower than those produced by the wild-type P. oleovorans and parent strain. The monomer composition of the two PHAs formed by the two PHA polymerases differed, indicating that the PHA polymerases have different substrate specificities for the incorporation of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers into PHA. Despite these differences, the PHAs formed were essentially indistinguishable from wild-type PHAs with respect to their thermal characteristics.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.

2,654 citations

Journal ArticleDOI
TL;DR: This review attempts to bring together the biochemical and physicochemical aspects of PHA along with new perspectives on its potential therapeutic applications to show that the polymer's physical properties can be regulated to a great extent.

1,917 citations

Journal ArticleDOI
TL;DR: It is shown that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism.
Abstract: Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

1,774 citations

Journal ArticleDOI
TL;DR: An overview of the different PHA biosynthetic systems and their genetic background is provided, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
Abstract: Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.

1,540 citations

Journal ArticleDOI
TL;DR: The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized and used to investigate the dynamics of microbial communities in petroleum-impacted ecosystems.
Abstract: Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times ( 2 S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

1,346 citations