scispace - formally typeset
Search or ask a question
Author

Hans van Lint

Bio: Hans van Lint is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Traffic flow & Microscopic traffic flow model. The author has an hindex of 23, co-authored 112 publications receiving 1885 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The new concept of consensual 3D speed maps allows the essence out of large amounts of link speed observations and reveals a global and previously mostly hidden picture of traffic dynamics at the whole city scale, which may be more regular and predictable than expected.
Abstract: In this paper, we investigate the day-to-day regularity of urban congestion patterns. We first partition link speed data every 10 min into 3D clusters that propose a parsimonious sketch of the congestion pulse. We then gather days with similar patterns and use consensus clustering methods to produce a unique global pattern that fits multiple days, uncovering the day-to-day regularity. We show that the network of Amsterdam over 35 days can be synthesized into only 4 consensual 3D speed maps with 9 clusters. This paves the way for a cutting-edge systematic method for travel time predictions in cities. By matching the current observation to historical consensual 3D speed maps, we design an efficient real-time method that successfully predicts 84% trips travel times with an error margin below 25%. The new concept of consensual 3D speed maps allows us to extract the essence out of large amounts of link speed observations and as a result reveals a global and previously mostly hidden picture of traffic dynamics at the whole city scale, which may be more regular and predictable than expected.

221 citations

Journal Article
TL;DR: A taxonomy of the many different approaches reported in the literature for the general problem of short-term traffic prediction is provided; in these cases, artificial intelligence (AI) techniques are discussed either as a complete solution or as part of a hybrid approach to short- term prediction.
Abstract: Road traffic is the visible result of the complex interplay between traffic demand (the amount and mix of vehicles arriving at a particular place and time) and traffic supply (e.g., capacity, prevailing speeds, and other average traffic characteristics). As a result, short-term prediction of road traffic variables is a complex nonlinear task that has been the subject of many research efforts in the past few decades. The term “short term” usually entails that the variables of interest are predicted for a period up to 1 h ahead, although the exact definition differs largely between approaches. In practical terms, short-term traffic prediction is an important if not critical component for intelligent transportation systems (ITS) and particularly in traffic control and traffic information provision. This paper briefly discusses some general aspects related to short-term traffic prediction. It then provides a taxonomy of the many different approaches reported in the literature for the general problem of short-term traffic prediction; in these cases, artificial intelligence (AI) techniques are discussed either as a complete solution or as part of a hybrid approach to short-term prediction.

189 citations

Journal ArticleDOI
TL;DR: An historical overview of the development of traffic flow models is proposed in the form of a model tree that shows the genealogy of four families: the fundamental relation, microscopic, mesoscopic and macroscopic models.

177 citations

Journal ArticleDOI
TL;DR: A common evaluation and benchmarking framework is proposed, providing a synthetic test bed, which enables implementation and comparison of OD estimation/updating algorithms and methodologies under “standardized” conditions.
Abstract: Estimation/updating of Origin–Destination (OD) flows and other traffic state parameters is a classical, widely adopted procedure in transport engineering, both in off-line and in on-line contexts. Notwithstanding numerous approaches proposed in the literature, there is still room for considerable improvements, also leveraging the unprecedented opportunity offered by information and communication technologies and big data. A key issue relates to the unobservability of OD flows in real networks – except from closed highway systems – thus leading to inherent difficulties in measuring performance of OD flows estimation/updating methods and algorithms. Starting from these premises, the paper proposes a common evaluation and benchmarking framework, providing a synthetic test bed, which enables implementation and comparison of OD estimation/updating algorithms and methodologies under “standardized” conditions. The framework, implemented in a platform available to interested parties upon request, has been flexibly designed and allows comparing a variety of approaches under various settings and conditions. Specifically, the structure and the key features of the framework are presented, along with a detailed experimental design for the application of different dynamic OD flow estimation algorithms. By way of example, applications to both off-line/planning and on-line algorithms are presented, together with a demonstration of the extensibility of the presented framework to accommodate additional data sources.

108 citations

Journal ArticleDOI
TL;DR: A hybrid model for predicting urban arterial travel time on the basis of so-called state-space neural networks (SSNNs) and the extended Kalman filter (EKF) is presented.
Abstract: A hybrid model for predicting urban arterial travel time on the basis of so-called state-space neural networks (SSNNs) and the extended Kalman filter (EKF) is presented. Previous research demonstrated that SSNNs can address complex nonlinear spatiotemporal problems. However, SSNN models require off-line training with large sets of input-output data, presenting three main drawbacks: (a) great amounts of time and effort are involved in collecting, preparing, and executing these training sessions; (b) as the input-output mapping changes over time, the model requires complete retraining; and (c) if a different input set becomes available (e.g., from inductive loops) and the input-output mapping has to be changed, then retraining the model is impossible until enough time has passed to compose a representative training data set. To improve SSNN effectiveness, the EKF is proposed to train the SSNN instead of conventional approaches. Moreover, this network topology is derived from the urban travel time prediction...

96 citations


Cited by
More filters
01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.

1,521 citations

Journal ArticleDOI
Zheng Zhao1, Weihai Chen1, Xingming Wu1, Peter C. Y. Chen, Jingmeng Liu1 
TL;DR: A novel traffic forecast model based on long short-term memory (LSTM) network is proposed, which considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units.
Abstract: Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis. The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A comparison with other representative forecast models validates that the proposed LSTM network can achieve a better performance.

1,204 citations