scispace - formally typeset
Search or ask a question
Author

Hanwei Yan

Bio: Hanwei Yan is an academic researcher from Anhui Agricultural University. The author has contributed to research in topics: Gene family & Gene. The author has an hindex of 14, co-authored 31 publications receiving 649 citations.
Topics: Gene family, Gene, Genome, Arabidopsis, Biology

Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that Zmhdz10 functions as a transcriptional regulator that can positively regulate drought and salt tolerance in plants through an ABA-dependent signaling pathway.
Abstract: Increasing evidence suggests that homeodomain-leucine zipper I (HD-Zip) I transcription factors play important roles in abiotic stress responses, but no HD-Zip I proteins have been reported in maize. Here, a drought-induced HD-Zip I gene, Zmhdz10, was isolated from maize and characterized for its role in stress responses. Real-time quantitative PCR showed that expression of Zmhdz10 was also induced by salt stress and ABA. Transient expression of Zmhdz10-green fluorescent protein (GFP) fusion proteins in onion cells showed a nuclear localization of Zmhdz10. Yeast hybrid assays demonstrated that Zmhdz10 has transactivation and DNA-binding activity in yeast cells. Overexpression of Zmhdz10 in rice led to enhanced tolerance to drought and salt stresses and increased sensitivity to ABA. Moreover, Zmhdz10 transgenic plants had lower relative electrolyte leakage (REL), lower malondialdehyde (MDA) and increased proline content relative to wild-type plants under stress conditions, which may contribute to enhanced stress tolerance. Zmhdz10 transgenic Arabidopsis plants also exhibited enhanced tolerance to drought and salt stresses that was concomitant with altered expression of stress/ABA-responsive genes, including Δ1-Pyrroline-5-carboxylate synthetase 1 (P5CS1), Responsive to dehydration 22 (RD22), Responsive to dehydration 29B (RD29B) and ABA-insensitive 1 (ABI1). Taken together, these results suggest that Zmhdz10 functions as a transcriptional regulator that can positively regulate drought and salt tolerance in plants through an ABA-dependent signaling pathway.

132 citations

Journal ArticleDOI
Yiyi Wang1, Lin Feng1, Yuxin Zhu1, Yuan Li1, Hanwei Yan1, Yan Xiang1 
TL;DR: The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought stress.
Abstract: WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought stress. Our results presented here may aid in the selection of appropriate candidate genes for further characterization of their biological functions in poplar. This article was reviewed by Prof Dandekar and Dr Andrade-Navarro.

79 citations

Journal ArticleDOI
TL;DR: Comparison of SbERF genes with maize ERF homologs suggests lateral gene transfer between monocot species, and can contribute to the understanting of the evolution of the ERF gene family.
Abstract: The ethylene response factor (ERF) family are members of the APETALA2 (AP2)/ERF transcription factor superfamily; they are known to play an important role in plant adaptation to biotic and abiotic stress ERF genes have been studied in Arabidopsis, rice, grape, and maize; however, there are few reports of ERF genes in sorghum We identified 105 sorghum ERF (SbERF) genes, which were categorized into 12 groups (A-1 to A-6 and B-1 to B-6) based on their sequence similarity, and this new method of classification for ERF genes was then further characterized A comprehensive bioinformatic analysis of SbERF genes was performed using a sorghum genomic database, to analyze the phylogeny of SbERF genes, identify other conserved motifs apart from the AP2/ERF domain, map SbERF genes to the 10 sorghum chromosomes, and determine the tissue-specific expression patterns of SbERF genes Gene clustering indicates that SbERF genes were generated by tandem duplications Comparison of SbERF genes with maize ERF homologs suggests lateral gene transfer between monocot species These results can contribute to our understanting of the evolution of the ERF gene family

70 citations

Journal ArticleDOI
21 Jul 2014-PLOS ONE
TL;DR: It is shown that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species.
Abstract: Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

61 citations

Journal ArticleDOI
TL;DR: A systematic analysis of the expansin gene family encompassing gene structure, phylogeny, chromosomal location, gene duplication, and gene ontology provides essential information for ZmEXPs cloning and functional exploration and will assist research on expansin-related mechanisms and contribute to future enhancement of maize grain yield.
Abstract: By promoting cell wall loosening, expansins contribute to cell enlargement during various developmental processes. Nevertheless, the role of expansins in the expansion and development of endosperm—a major seed component whose cell size is significantly associated with grain yield—is poorly understood. To explore associated biological processes and the evolution of expansins in maize, we performed a systematic analysis of the expansin gene family encompassing gene structure, phylogeny, chromosomal location, gene duplication, and gene ontology. A total of 88 maize expansin genes (ZmEXPs) were identified and categorized into three subfamilies according to their phylogenetic relationships. Expression patterns of ZmEXPs were also investigated in nine different tissues by semi-quantitative RT-PCR. The expression of eight ZmEXPs was detected in endosperm, with five showing endosperm-specific expression. Quantitative RT-PCR was used to analyze expression patterns of the eight ZmEXPs in endosperm (10 days after pollination) under abscisic acid (ABA) and gibberellic acid (GA3) treatments. All eight ZmEXPs were found to be significantly regulated by ABA and GA3 in endosperm, suggesting important roles for these hormones in the regulation of ZmEXPs during endosperm development. Our results provide essential information for ZmEXPs cloning and functional exploration, which will assist research on expansin-related mechanisms and contribute to future enhancement of maize grain yield.

58 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Abstract: The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.

349 citations

Journal ArticleDOI
TL;DR: This review summarizes studies on molecular regulatory networks involved in response to drought stress and highlights progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.
Abstract: Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.

326 citations

Journal ArticleDOI
TL;DR: Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls.

292 citations

Journal ArticleDOI
30 Sep 2019-Genes
TL;DR: The aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Abstract: In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.

285 citations