scispace - formally typeset
Search or ask a question
Author

Hany A. El-Shemy

Bio: Hany A. El-Shemy is an academic researcher from Cairo University. The author has contributed to research in topics: Annona muricata & HeLa. The author has an hindex of 24, co-authored 90 publications receiving 2083 citations. Previous affiliations of Hany A. El-Shemy include Pan-African University & United States Department of Agriculture.
Topics: Annona muricata, HeLa, DPPH, Gene, Reporter gene


Papers
More filters
Journal ArticleDOI
TL;DR: Different extracts from the leaves of Moringa or drumstick tree are tested for activity against leukemia and hepatocarcinoma cells in vitro and it is found that M. oleifera may have potential for use as source of natural treatment for diseases such as cancer.
Abstract: Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the pharmacological principles currently used as anticancer agents were first isolated from plants. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the leaves of Moringa or drumstick tree ( Moringa oleifera ) for activity against leukemia and hepatocarcinoma cells in vitro . The extracts could kill majority (70 - 86%) of the abnormal cells among primary cells harvested from 10 patients with acute lymphoblastic leukemia (ALL) and 15 with acute myeloid leukemia (AML) as well as a culture of hepatocarcinoma cells (75% death), but most significantly by the hot water and ethanol extracts. In conclusion, M. oleifera may have potential for use as source of natural treatment for diseases such as cancer.

189 citations

Journal Article
TL;DR: In this paper, the authors used Chi-square goodness of fit test to assign the relative abundance of different phytochemicals, including secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols.
Abstract: OBJECTIVE To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. METHODS Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. RESULTS Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. CONCLUSIONS The results showed that A. muricata was a promising new antioxidant and anticancer agent.

158 citations

Journal ArticleDOI
TL;DR: It is concluded that close coupling between aquaporins and K-channel transporters in water uptake of roots is responsible for regulation of stem diameter dynamics of green house tomato plants.

152 citations

Journal ArticleDOI
08 Oct 2010-PLOS ONE
TL;DR: The aim here was to identify compounds that underlie the effects on microbes of E. crassipes and show the presence of an alkaloid and four phthalate derivatives that exhibited the antimicrobial and antialgal activities.
Abstract: Eichhornia crassipes (Mart) Solms is an invasive weed known to out-compete native plants and negatively affect microbes including phytoplankton. The spread and population density of E. crassipes will be favored by global warming. The aim here was to identify compounds that underlie the effects on microbes. The entire plant of E. crassipes was collected from El Zomor canal, River Nile (Egypt), washed clean, then air dried. Plant tissue was extracted three times with methanol and fractionated by thin layer chromatography (TLC). The crude methanolic extract and five fractions from TLC (A–E) were tested for antimicrobial (bacteria and fungal) and anti-algal activities (green microalgae and cyanobacteria) using paper disc diffusion bioassay. The crude extract as well as all five TLC fractions exhibited antibacterial activities against both the Gram positive bacteria; Bacillus subtilis and Streptococcus faecalis; and the Gram negative bacteria; Escherichia coli and Staphylococcus aureus. Growth of Aspergillus flavus and Aspergillus niger were not inhibited by either E. crassipes crude extract nor its five fractions. In contrast, Candida albicans (yeast) was inhibited by all. Some antialgal activity of the crude extract and its fractions was manifest against the green microalgae; Chlorella vulgaris and Dictyochloropsis splendida as well as the cyanobacteria; Spirulina platensis and Nostoc piscinale. High antialgal activity was only recorded against Chlorella vulgaris. Identifications of the active antimicrobial and antialgal compounds of the crude extract as well as the five TLC fractions were carried out using gas chromatography combined with mass spectroscopy. The analyses showed the presence of an alkaloid (fraction A) and four phthalate derivatives (Fractions B–E) that exhibited the antimicrobial and antialgal activities.

140 citations

Journal ArticleDOI
TL;DR: Plant biomass production was enhanced and grain yield reduced by the high temperature treatment due to effects on sink activity rather than source activity, and heat resistant ear development can be targeted for genetic improvement.

128 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels are reviewed and various approaches being taken to enhance thermotolerance in plants are described.
Abstract: High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide Plant growth and development involve numerous biochemical reactions that are sensitive to temperature Plant responses to HT vary with the degree and duration of HT and the plant type HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes HT-induced gene expression and metabolite synthesis also substantially improve tolerance The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants

1,392 citations

Journal ArticleDOI
TL;DR: The emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging is focused on.
Abstract: Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.

1,136 citations

Journal ArticleDOI
22 Sep 2017
TL;DR: There are concerns about using synthetic phenolic antioxidants as food additives because of the reported negative effects on human health, so a replacement of these synthetics by antioxidant extractions from various foods has been proposed.
Abstract: There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.

942 citations

Journal ArticleDOI
16 Feb 2015
TL;DR: The results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall and identify the key components that could be targeted to improve biomass production under stress conditions.
Abstract: This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

813 citations

Journal ArticleDOI
TL;DR: This work reviews some exciting advances in this area over the last two decades, focusing on new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, and cross-talk between INV-mediated sugar signaling and hormonal control of development.

597 citations