scispace - formally typeset
Search or ask a question
Author

Hanzhou Wu

Bio: Hanzhou Wu is an academic researcher from Shanghai University. The author has contributed to research in topics: Computer science & Information hiding. The author has an hindex of 10, co-authored 70 publications receiving 788 citations. Previous affiliations of Hanzhou Wu include Chinese Academy of Sciences & Southwest Jiaotong University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Although it learns from only one type of noise residual, the proposed CNN is competitive in terms of detection performance compared with the SRM with ensemble classifiers on the BOSSbase for detecting S-UNIWARD and HILL.
Abstract: Recent studies have indicated that the architectures of convolutional neural networks (CNNs) tailored for computer vision may not be best suited to image steganalysis. In this letter, we report a CNN architecture that takes into account knowledge of steganalysis. In the detailed architecture, we take absolute values of elements in the feature maps generated from the first convolutional layer to facilitate and improve statistical modeling in the subsequent layers; to prevent overfitting, we constrain the range of data values with the saturation regions of hyperbolic tangent ( TanH ) at early stages of the networks and reduce the strength of modeling using $1\times1$ convolutions in deeper layers. Although it learns from only one type of noise residual, the proposed CNN is competitive in terms of detection performance compared with the SRM with ensemble classifiers on the BOSSbase for detecting S-UNIWARD and HILL. The results have implied that well-designed CNNs have the potential to provide a better detection performance in the future.

506 citations

Proceedings ArticleDOI
20 Jun 2016
TL;DR: Results have indicated that both the recovery of the lost information, and learning from intermediate representation in CNNs instead of output probabilities, have led to performance improvement.
Abstract: There has been growing interest in using convolutional neural networks (CNNs) in the fields of image forensics and steganalysis, and some promising results have been reported recently. These works mainly focus on the architectural design of CNNs, usually, a single CNN model is trained and then tested in experiments. It is known that, neural networks, including CNNs, are suitable to form ensembles. From this perspective, in this paper, we employ CNNs as base learners and test several different ensemble strategies. In our study, at first, a recently proposed CNN architecture is adopted to build a group of CNNs, each of them is trained on a random subsample of the training dataset. The output probabilities, or some intermediate feature representations, of each CNN, are then extracted from the original data and pooled together to form new features ready for the second level of classification. To make best use of the trained CNN models, we manage to partially recover the lost information due to spatial subsampling in the pooling layers when forming feature vectors. Performance of the ensemble methods are evaluated on BOSSbase by detecting S-UNIWARD at 0.4 bpp embedding rate. Results have indicated that both the recovery of the lost information, and learning from intermediate representation in CNNs instead of output probabilities, have led to performance improvement.

136 citations

Journal ArticleDOI
TL;DR: The proposed RDH scheme for encrypted palette images adopts a color partitioning method to use the palette colors to construct a certain number of embeddable color triples, whose indexes are self-embedded into the encrypted image so that a data hider can collect the usable color tri doubles to embed the secret data.
Abstract: Reversible data hiding (RDH) into encrypted images is of increasing attention to researchers as the original content can be perfectly reconstructed after the embedded data are extracted while the content owner’s privacy remains protected. The existing RDH techniques are designed for grayscale images and, therefore, cannot be directly applied to palette images. Since the pixel values in a palette image are not the actual color values, but rather the color indexes, RDH in encrypted palette images is more challenging than that designed for normal image formats. To the best knowledge of the authors, there is no suitable RDH scheme designed for encrypted palette images that has been reported, while palette images have been widely utilized. This has motivated us to design a reliable RDH scheme for encrypted palette images. The proposed method adopts a color partitioning method to use the palette colors to construct a certain number of embeddable color triples, whose indexes are self-embedded into the encrypted image so that a data hider can collect the usable color triples to embed the secret data. For a receiver, the embedded color triples can be determined by verifying a self-embedded check code that enables the receiver to retrieve the embedded data only with the data hiding key. Using the encryption key, the receiver can roughly reconstruct the image content. Experiments have shown that our proposed method has the property that the presented data extraction and image recovery are separable and reversible. Compared with the state-of-the-art works, our proposed method can provide a relatively high data-embedding payload, maintain high peak signal-to-noise ratio values of the decrypted and marked images, and have a low computational complexity.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a digital watermarking framework suitable for deep neural networks that output images as the results, in which any image outputted from a watermarked neural network must contain a certain watermark.
Abstract: Watermarking neural networks is a quite important means to protect the intellectual property (IP) of neural networks. In this paper, we introduce a novel digital watermarking framework suitable for deep neural networks that output images as the results, in which any image outputted from a watermarked neural network must contain a certain watermark. Here, the host neural network to be protected and a watermark-extraction network are trained together, so that, by optimizing a combined loss function, the trained neural network can accomplish the original task while embedding a watermark into the outputted images. This work is totally different from previous schemes carrying a watermark by network weights or classification labels of the trigger set. By detecting watermarks in the outputted images, this technique can be adopted to identify the ownership of the host network and find whether an image is generated from a certain neural network or not. We demonstrate that this technique is effective and robust on a variety of image processing tasks, including image colorization, super-resolution, image editing, semantic segmentation and so on.

48 citations

Journal ArticleDOI
TL;DR: This paper proposes to mark a DNN by inserting an independent neural network that allows to use selective weights for watermarking, which can be successfully embedded and extracted with a low neural network loss even under the common attacks including model fine-tuning and compression.
Abstract: Recent advances in deep learning (DL) have led to great success in tasks of computer vision and pattern recognition. Sharing pre-trained DL models has been an important means to promote the rapid progress of research community and development of DL based systems. However, it also raises challenges to model authentication. It is quite necessary to protect the ownership of the DL models to be released. In this paper, we present a digital watermarking technique to deep neural networks (DNNs). We propose to mark a DNN by inserting an independent neural network that allows us to use selective weights for watermarking. The independent neural network is only used in the training phase and watermark verification phase, and will not be released publicly. Experiments have shown that, the performance of marked DNN on its original task will not be degraded significantly. Meantime, the watermark can be successfully embedded and extracted with a low neural network loss even under the common attacks including model fine-tuning and compression, which has shown the superiority and applicability of the proposed work.

40 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This paper presents an alternative approach to steganalysis of digital images based on convolutional neural network (CNN), which is shown to be able to well replicate and optimize these key steps in a unified framework and learn hierarchical representations directly from raw images.
Abstract: Nowadays, the prevailing detectors of steganographic communication in digital images mainly consist of three steps, ie, residual computation, feature extraction, and binary classification In this paper, we present an alternative approach to steganalysis of digital images based on convolutional neural network (CNN), which is shown to be able to well replicate and optimize these key steps in a unified framework and learn hierarchical representations directly from raw images The proposed CNN has a quite different structure from the ones used in conventional computer vision tasks Rather than a random strategy, the weights in the first layer of the proposed CNN are initialized with the basic high-pass filter set used in the calculation of residual maps in a spatial rich model (SRM), which acts as a regularizer to suppress the image content effectively To better capture the structure of embedding signals, which usually have extremely low SNR (stego signal to image content), a new activation function called a truncated linear unit is adopted in our CNN model Finally, we further boost the performance of the proposed CNN-based steganalyzer by incorporating the knowledge of selection channel Three state-of-the-art steganographic algorithms in spatial domain, eg, WOW, S-UNIWARD, and HILL, are used to evaluate the effectiveness of our model Compared to SRM and its selection-channel-aware variant maxSRMd2, our model achieves superior performance across all tested algorithms for a wide variety of payloads

483 citations

Journal ArticleDOI
TL;DR: A deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography.
Abstract: Steganography detectors built as deep convolutional neural networks have firmly established themselves as superior to the previous detection paradigm – classifiers based on rich media models. Existing network architectures, however, still contain elements designed by hand, such as fixed or constrained convolutional kernels, heuristic initialization of kernels, the thresholded linear unit that mimics truncation in rich models, quantization of feature maps, and awareness of JPEG phase. In this work, we describe a deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography. The key part of the proposed architecture is a significantly expanded front part of the detector that “computes noise residuals” in which pooling has been disabled to prevent suppression of the stego signal. Extensive experiments show the superior performance of this network with a significant improvement, especially in the JPEG domain. Further performance boost is observed by supplying the selection channel as a second channel.

473 citations

Journal ArticleDOI
TL;DR: This paper has developed a new type of CNN layer, called a constrained convolutional layer, that is able to jointly suppress an image’s content and adaptively learn manipulation detection features.
Abstract: Identifying the authenticity and processing history of an image is an important task in multimedia forensics. By analyzing traces left by different image manipulations, researchers have been able to develop several algorithms capable of detecting targeted editing operations. While this approach has led to the development of several successful forensic algorithms, an important problem remains: creating forensic detectors for different image manipulations is a difficult and time consuming process. Furthermore, forensic analysts need general purpose forensic algorithms capable of detecting multiple different image manipulations. In this paper, we address both of these problems by proposing a new general purpose forensic approach using convolutional neural networks (CNNs). While CNNs are capable of learning classification features directly from data, in their existing form they tend to learn features representative of an image’s content. To overcome this issue, we have developed a new type of CNN layer, called a constrained convolutional layer, that is able to jointly suppress an image’s content and adaptively learn manipulation detection features. Through a series of experiments, we show that our proposed constrained CNN is able to learn manipulation detection features directly from data. Our experimental results demonstrate that our CNN can detect multiple different editing operations with up to 99.97% accuracy and outperform the existing state-of-the-art general purpose manipulation detector. Furthermore, our constrained CNN can still accurately detect image manipulations in realistic scenarios where there is a source camera model mismatch between the training and testing data.

353 citations

Journal ArticleDOI
TL;DR: Comprehensive experiments show that the proposed Deep Residual learning based Network (DRN) model can detect the state of arts steganographic algorithms at a high accuracy and outperforms the classical rich model method and several recently proposed CNN based methods.
Abstract: Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have demonstrated superior performances than traditional steganalytic methods. Following this idea, we propose a novel CNN model for image steganalysis based on residual learning. The proposed Deep Residual learning based Network (DRN) shows two attractive properties than existing CNN based methods. First, the model usually contains a large number of network layers, which proves to be effective to capture the complex statistics of digital images. Second, the residual learning in DRN preserves the stego signal coming from secret messages, which is extremely beneficial for the discrimination of cover images and stego images. Comprehensive experiments on standard dataset show that the DRN model can detect the state of arts steganographic algorithms at a high accuracy. It also outperforms the classical rich model method and several recently proposed CNN based methods.

341 citations