scispace - formally typeset
Search or ask a question
Author

Hao Bian

Bio: Hao Bian is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Femtosecond & Microlens. The author has an hindex of 21, co-authored 86 publications receiving 1855 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Inspired by the underwater superaerophilicity of lotus leaves, it is shown that the polydimethylsiloxane surface after femtosecond laser ablation exhibits superhydrophobicity in air and becomessuperaerophilic in water.
Abstract: A micro-/nanoscale hierarchical rough structure inspired by the underwater superaerophobicity of fish scales was fabricated by ablation of a silicon surface by a femtosecond laser. The resultant silicon surface showed superhydrophilicity in air and became superaerophobic after immersion in water. Additionally, inspired by the underwater superaerophilicity of lotus leaves, we showed that the polydimethylsiloxane surface after femtosecond laser ablation exhibits superhydrophobicity in air and becomes superaerophilic in water. The underwater superaerophobic surface showed excellent antibubble ability, whereas the underwater superaerophilic surface could absorb and capture air bubbles in a water medium. The experimental results revealed that the in-air superhydrophilic surface generally shows superaerophobicity in water and that the in-air superhydrophobic surface generally shows underwater superaerophilicity. An underwater superaerophobic porous aluminum sheet with through microholes was prepared, and this s...

148 citations

Journal ArticleDOI
TL;DR: In this paper, a kind of rough microstructures was formed on polytetrafluoroethylene (PTFE) sheet by femtosecond laser treatment, which showed durable superhydrophobicity and ultralow water adhesion even after storing in various harsh environment for a long time, including strong acid, strong alkali, and high temperature.

140 citations

Journal ArticleDOI
TL;DR: The presented technique is a maskless process and allows the flexible control of the size, shape and the packing pattern of the MLAs by adjusting the parameters such as the pulse energy, the number of shots and etching time.
Abstract: A simple and efficient technique for large-area manufacturing of concave microlens arrays (MLAs) on silica glasses with femtosecond (fs)-laser-enhanced chemical wet etching is demonstrated. By means of fs laser in situ irradiations followed by the hydrofluoric acid etching process, large area close-packed rectangular and hexagonal concave MLAs with diameters less than a hundred of micrometers are fabricated within a few hours. The fabricated MLAs exhibit excellent surface quality and uniformity. In contrast to the classic thermal reflow process, the presented technique is a maskless process and allows the flexible control of the size, shape and the packing pattern of the MLAs by adjusting the parameters such as the pulse energy, the number of shots and etching time.

139 citations

Journal ArticleDOI
TL;DR: The results reveal that the adhesive forces of as-prepared surfaces can be tuned by varying the area ratio (AR(s-h)) of superhydrophobic domain to hydrophobicdomain, thus resulting in tunable static and dynamic wettabilities.
Abstract: In this paper, we present a new approach to the tunable adhesive superhydrophobic surfaces consisting of periodic hydrophobic patterns and superhydrophobic structures by femtosecond (fs) laser irradiation on silicon. The surfaces are composed of periodic hydrophobic patterns (triangle, circle, and rhombus) and superhydrophobic structures (dual-scale spikes induced by a fs laser). Our results reveal that the adhesive forces of as-prepared surfaces can be tuned by varying the area ratio (ARs-h) of superhydrophobic domain to hydrophobic domain, thus resulting in tunable static and dynamic wettabilities. By increasing ARs-h, (i) the static wetting property, which is characterized by the minimum water droplet volume that enables a droplet to land on the surface, can be tailored from 1 μL to 9 μL; (ii) the sliding angle can be flexibly adjusted, ranging from >90° (a droplet cannot slide off when the sample is positioned upside down) to 5°; and (iii) the droplet rebound behaviors can be modulated from partial re...

128 citations

Journal ArticleDOI
TL;DR: It is shown that uniform microlenses with different diameters and depths can be controlled by adjusting the power of laser pulses, which greatly enhances the processing efficiency compared to the classical laser direct writing method.
Abstract: A fast and single-step process is developed for the fabrication of low-cost, high-quality, and large-area concave microlens arrays (MLAs) by the high-speed line-scanning of femtosecond laser pulses. Each concave microlens can be generated by a single laser pulse, and over 2.78 million microlenses were fabricated on a 2 × 2 cm2 polydimethylsiloxane (PDMS) sheet within 50 min, which greatly enhances the processing efficiency compared to the classical laser direct writing method. The mechanical pressure induced by the expansion of the laser-induced plasmas as well as a long resolidifing time is the reason for the formation of smooth concave spherical microstructures. We show that uniform microlenses with different diameters and depths can be controlled by adjusting the power of laser pulses. Their high-quality optical performance is also demonstrated in this work.

121 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts.
Abstract: Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials,...

892 citations

Journal ArticleDOI
TL;DR: A review of the recent progress of oil/water separation technologies based on filtration and absorption methods using various materials that possess surface superwetting properties is presented in this article.
Abstract: Oil/water separation is a field of high significance as it has direct practical implications for resolving the problem of industrial oily wastewater and other oil/water pollution. Therefore, the development of functional materials for efficient treatment of oil-polluted water is imperative. In this feature article, we have reviewed the recent progress of oil/water separation technologies based on filtration and absorption methods using various materials that possess surface superwetting properties. In each section, we present in detail representative work and describe the concepts, employed materials, fabrication methods, and the effects of their wetting/dewetting behaviors on oil/water separation. Finally, the challenges and future research directions of this promising research field are briefly discussed.

762 citations

01 Jan 2007
Abstract: Fogging occurs when moisture condensation takes the form of accumulated droplets with diameters larger than 190 nm or half of the shortest wavelength (380 nm) of visible light. This problem may be effectively addressed by changing the affinity of a material’s surface for water, which can be accomplished via two approaches: i) the superhydrophilic approach, with a water contact angle (CA) less than 5°, and ii) the superhydrophobic approach, with a water CA greater than 150°, and extremely low CA hysteresis. To date, all techniques reported belong to the former category, as they are intended for applications in optical transparent coatings. A well-known example is the use of photocatalytic TiO2 nanoparticle coatings that become superhydrophilic under UV irradiation. Very recently, a capillary effect was skillfully adopted to achieve superhydrophilic properties by constructing 3D nanoporous structures from layer-by-layer assembled nanoparticles. The key to these two “wet”-style antifogging strategies is for micrometer-sized fog drops to rapidly spread into a uniform thin film, which can prevent light scattering and reflection from nucleated droplets. Optical transparency is not an intrinsic property of antifogging coatings even though recently developed antifogging coatings are almost transparent, and the transparency could be achieved by further tuning the nanoparticle size and film thickness. To our knowledge, the antifogging coatings may also be applied to many fields that do not require optical transparency, including, for example, paints for inhibiting swelling and peeling issues and metal surfaces for preventing corrosion. These types of issues, which are caused by adsorption of moisture, are hard to solve by the superhydrophilic approach because of its inherently “wet” nature. Thus, a “dry”-style antifogging strategy, which consists of a novel superhydrophobic technique that can prevent moisture or microscale fog drops from nucleating on a surface, is desired. Recent bionic researches have revealed that the self-cleaning ability of lotus leaves and the striking ability of a water-strider’s legs to walk on water can be attributed to the ideal superhydrophobicity of their surfaces, induced by special microand nanostructures. To date, the biomimetic fabrication of superhydrophobic microand/or nanostructures has attracted considerable interest, and these types of materials can be used for such applications as self-cleaning coatings and stain-resistant textiles. Although a superhydrophobic technique inspired by lotus leaves is expected to be able to solve such fogging problems because the water droplets can not remain on the surface, there are no reports of such antifogging coatings. Very recently, researchers from General Motors have reported that the surfaces of lotus leaves become wet with moisture because the size of the fog drops are at the microscale—so small that they can be easily trapped in the interspaces among micropapillae. Thus, lotuslike surface microstructures are unsuitable for superhydrophobic antifogging coatings, and a new inspiration from nature is desired for solving this problem. In this communication, we report a novel, biological, superhydrophobic antifogging strategy. It was found that the compound eyes of the mosquito C. pipiens possess ideal superhydrophobic properties that provide an effective protective mechanism for maintaining clear vision in a humid habitat. Our research indicates that this unique property is attributed to the smart design of elaborate microand nanostructures: hexagonally non-close-packed (ncp) nipples at the nanoscale prevent microscale fog drops from condensing on the ommatidia surface, and hexagonally close-packed (hcp) ommatidia at the microscale could efficiently prevent fog drops from being trapped in the voids between the ommatidia. We also fabricated artificial compound eyes by using soft lithography and investigated the effects of microand nanostructures on the surface hydrophobicity. These findings could be used to develop novel superhydrophobic antifogging coatings in the near future. It is known that mosquitoes possess excellent vision, which they exploit to locate various resources such as mates, hosts, and resting sites in a watery and dim habitat. To better understand such remarkable abilities, we first investigated the interaction between moisture and the eye surface. An ultrasonic humidifier was used to regulate the relative humidity of the atmosphere and mimic a mist composed of numerous tiny water droplets with diameters less than 10 lm. As the fog was C O M M U N IC A IO N

756 citations

Journal ArticleDOI
TL;DR: In this article, a review gives an overview of recent advances in the potential applications of superhydrophobic materials, which are characterized by extremely high water contact angles and various adhesion properties.
Abstract: This review gives an overview of recent advances in the potential applications of superhydrophobic materials. Such properties are characterized by extremely high water contact angles and various adhesion properties. The conception of superhydrophobic materials has been possible by studying and mimicking natural surfaces. Now, various applications have emerged such as anti-icing, anti-corrosion and anti-bacterial coatings, microfluidic devices, textiles, oil–water separation, water desalination/purification, optical devices, sensors, batteries and catalysts. At least two parameters were found to be very important for many applications: the presence of air on superhydrophobic materials with self-cleaning properties (Cassie–Baxter state) and the robustness of the superhydrophobic properties (stability of the Cassie–Baxter state). This review will allow researchers to envisage new ideas and industrialists to advance in the commercialization of these materials.

470 citations