scispace - formally typeset
Search or ask a question
Author

Hao Cheng

Bio: Hao Cheng is an academic researcher from Microsoft. The author has contributed to research in topics: Computer science & Question answering. The author has an hindex of 15, co-authored 40 publications receiving 903 citations. Previous affiliations of Hao Cheng include Beijing University of Posts and Telecommunications & University of Washington.

Papers published on a yearly basis

Papers
More filters
Journal Article•DOI•
TL;DR: It is shown that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models.
Abstract: Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpora, such as newswire and Web. A prevailing assumption is that even domain-specific pretraining can benefit by starting from general-domain language models. In this paper, we challenge this assumption by showing that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models. To facilitate this investigation, we compile a comprehensive biomedical NLP benchmark from publicly-available datasets. Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks, leading to new state-of-the-art results across the board. Further, in conducting a thorough evaluation of modeling choices, both for pretraining and task-specific fine-tuning, we discover that some common practices are unnecessary with BERT models, such as using complex tagging schemes in named entity recognition (NER). To help accelerate research in biomedical NLP, we have released our state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring our BLURB benchmark (short for Biomedical Language Understanding & Reasoning Benchmark) at this https URL.

689 citations

Proceedings Article•DOI•
07 May 2015
TL;DR: In this paper, the authors compare the merits of different language modeling approaches for the first time by using the same state-of-the-art CNN as input, and examine issues in different approaches, including linguistic irregularities, caption repetition, and data set overlap.
Abstract: Two recent approaches have achieved state-of-the-art results in image captioning. The first uses a pipelined process where a set of candidate words is generated by a convolutional neural network (CNN) trained on images, and then a maximum entropy (ME) language model is used to arrange these words into a coherent sentence. The second uses the penultimate activation layer of the CNN as input to a recurrent neural network (RNN) that then generates the caption sequence. In this paper, we compare the merits of these different language modeling approaches for the first time by using the same state-ofthe-art CNN as input. We examine issues in the different approaches, including linguistic irregularities, caption repetition, and data set overlap. By combining key aspects of the ME and RNN methods, we achieve a new record performance over previously published results on the benchmark COCO dataset. However, the gains we see in BLEU do not translate to human judgments.

242 citations

Posted Content•
TL;DR: By combining key aspects of the ME and RNN methods, this paper achieves a new record performance over previously published results on the benchmark COCO dataset, however, the gains the authors see in BLEU do not translate to human judgments.
Abstract: Two recent approaches have achieved state-of-the-art results in image captioning. The first uses a pipelined process where a set of candidate words is generated by a convolutional neural network (CNN) trained on images, and then a maximum entropy (ME) language model is used to arrange these words into a coherent sentence. The second uses the penultimate activation layer of the CNN as input to a recurrent neural network (RNN) that then generates the caption sequence. In this paper, we compare the merits of these different language modeling approaches for the first time by using the same state-of-the-art CNN as input. We examine issues in the different approaches, including linguistic irregularities, caption repetition, and data set overlap. By combining key aspects of the ME and RNN methods, we achieve a new record performance over previously published results on the benchmark COCO dataset. However, the gains we see in BLEU do not translate to human judgments.

143 citations

Posted Content•
Xiaodong Liu1, Hao Cheng1, Pengcheng He1, Weizhu Chen1, Yu Wang1, Hoifung Poon1, Jianfeng Gao1 •
TL;DR: It is shown that adversarial pre-training can improve both generalization and robustness, and a general algorithm ALUM (Adversarial training for large neural LangUage Models), which regularizes the training objective by applying perturbations in the embedding space that maximizes the adversarial loss is proposed.
Abstract: Generalization and robustness are both key desiderata for designing machine learning methods. Adversarial training can enhance robustness, but past work often finds it hurts generalization. In natural language processing (NLP), pre-training large neural language models such as BERT have demonstrated impressive gain in generalization for a variety of tasks, with further improvement from adversarial fine-tuning. However, these models are still vulnerable to adversarial attacks. In this paper, we show that adversarial pre-training can improve both generalization and robustness. We propose a general algorithm ALUM (Adversarial training for large neural LangUage Models), which regularizes the training objective by applying perturbations in the embedding space that maximizes the adversarial loss. We present the first comprehensive study of adversarial training in all stages, including pre-training from scratch, continual pre-training on a well-trained model, and task-specific fine-tuning. ALUM obtains substantial gains over BERT on a wide range of NLP tasks, in both regular and adversarial scenarios. Even for models that have been well trained on extremely large text corpora, such as RoBERTa, ALUM can still produce significant gains from continual pre-training, whereas conventional non-adversarial methods can not. ALUM can be further combined with task-specific fine-tuning to attain additional gains. The ALUM code is publicly available at this https URL.

127 citations

Journal Article•DOI•
31 Jan 2022
TL;DR: This paper proposed a method for pretraining large neural language models, such as BERT, which has led to impressive gains on many natural language processing (NLP) tasks, but most pretraining efforts focus on general domain corpora.
Abstract: Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpor...

126 citations


Cited by
More filters
Proceedings Article•
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Posted Content•
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

3,935 citations

Book•
Li Deng1, Dong Yu1•
12 Jun 2014
TL;DR: This monograph provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.
Abstract: This monograph provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria in mind: (1) expertise or knowledge of the authors; (2) the application areas that have already been transformed by the successful use of deep learning technology, such as speech recognition and computer vision; and (3) the application areas that have the potential to be impacted significantly by deep learning and that have been experiencing research growth, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.

2,817 citations

Posted Content•
TL;DR: This article seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks, particularly in deep neural networks.
Abstract: Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses recent advances. In particular, it seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks.

2,202 citations

Journal Article•DOI•
TL;DR: This paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy to enable researchers to better understand the state of the field and identify directions for future research.
Abstract: Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together Multimodal machine learning aims to build models that can process and relate information from multiple modalities It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research

1,945 citations