scispace - formally typeset
Search or ask a question
Author

Hao Li

Bio: Hao Li is an academic researcher from University of Electronic Science and Technology of China. The author has contributed to research in topics: Perovskite (structure) & Electrode. The author has an hindex of 11, co-authored 17 publications receiving 519 citations. Previous affiliations of Hao Li include Utah State University & Huazhong University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors highlight the designs and mechanisms of different SMONs with various patterns (e.g., nanoparticles, nanowires, nanosheets, nanorods, nanotubes, nanofilms, etc.) for gas sensors to detect various hazardous gases at room temperature.
Abstract: High-precision gas sensors operated at room temperature are attractive for various real-time gas monitoring applications, with advantages including low energy consumption, cost effectiveness and device miniaturization/flexibility. Studies on sensing materials, which play a key role in good gas sensing performance, are currently focused extensively on semiconducting metal oxide nanostructures (SMONs) used in the conventional resistance type gas sensors. This topical review highlights the designs and mechanisms of different SMONs with various patterns (e.g. nanoparticles, nanowires, nanosheets, nanorods, nanotubes, nanofilms, etc.) for gas sensors to detect various hazardous gases at room temperature. The key topics include (1) single phase SMONs including both n-type and p-type ones; (2) noble metal nanoparticle and metal ion modified SMONs; (3) composite oxides of SMONs; (4) composites of SMONs with carbon nanomaterials. Enhancement of the sensing performance of SMONs at room temperature can also be realized using a photo-activation effect such as ultraviolet light. SMON based mechanically flexible and wearable room temperature gas sensors are also discussed. Various mechanisms have been discussed for the enhanced sensing performance, which include redox reactions, heterojunction generation, formation of metal sulfides and the spillover effect. Finally, major challenges and prospects for the SMON based room temperature gas sensors are highlighted.

434 citations

Journal ArticleDOI
TL;DR: In this article, the mesoporous In2O3 sensors exhibited good reversibility and repeatability towards hydrogen gas and showed a good selectivity for hydrogen compared to other commonly investigated gases including NH3, CO, ethyl alcohol, styrene, CH2Cl2 and formaldehyde.

92 citations

Journal ArticleDOI
TL;DR: An asymmetric supercapacitor was assembled using the CuCo2S4/CNTs-3.2% as the positive electrode and the active carbon as the negative electrode, which exhibited an energy density of 23.2 Wh kg-1 at a power density of 402.7 W kg-1, indicating its excellent cycle stability.

90 citations

Journal ArticleDOI
TL;DR: In this article, the zinc cobalt sulfide nanoparticles (ZCS NPs) are firstly synthesized via a hydrothermal method assisted by hexadecyltrimethyl ammonium bromide (CTAB), and then transformed into ZCS nanoparticles using a facile sulfuration process.

53 citations

Journal ArticleDOI
TL;DR: In this article, the vertical orientation of 2D perovskite solar cells was improved by adding dimethyl sulfoxide (DMSO) and thio-semicarbazide (TSC) as additive into the precursor solution.

40 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: For long-term stability and practical applications, electrolytes based on the iodine/triiodine couple also suffer from two other disadvantages: the corrosive effect toward the metal electrodes, and the partial absorption of the visible light by triiodine anions.
Abstract: Among the several approaches for harnessing solar energy and converting it into electricity, dye-sensitized solar cells (DSSC) represent one of the most promising methods for future large-scale power production from renewable energy sources. In these cells, the sensitizer is one of the key components harvesting solar radiation and converting it into electric current. The electrochemical, photophysical, and ground and excited state properties of the sensitizer play an important role for charge transfer dynamics at the semiconductor interface. Moreover, for long-term stability and practical applications, electrolytes based on the iodine/triiodine couple also suffer from two other disadvantages: the corrosive effect toward the metal electrodes, and the partial absorption of the visible light by triiodine anions. These issues hence constitute one of the reasons that have encouraged the development of alternative iodine-free redox couples in liquid electrolytes for DSSCs.

795 citations