scispace - formally typeset
Search or ask a question
Author

Hao Luo

Other affiliations: Huawei, Alibaba Group
Bio: Hao Luo is an academic researcher from Zhejiang University. The author has contributed to research in topics: Computer science & Artificial intelligence. The author has an hindex of 15, co-authored 46 publications receiving 1586 citations. Previous affiliations of Hao Luo include Huawei & Alibaba Group.


Papers
More filters
Proceedings ArticleDOI
01 Jun 2019
TL;DR: A simple and efficient baseline for person re-identification with deep neural networks by combining effective training tricks together, which achieves 94.5% rank-1 and 85.9% mAP on Market1501 with only using global features.
Abstract: This paper explores a simple and efficient baseline for person re-identification (ReID). Person re-identification (ReID) with deep neural networks has made progress and achieved high performance in recent years. However, many state-of-the-arts methods design complex network structure and concatenate multi-branch features. In the literature, some effective training tricks are briefly appeared in several papers or source codes. This paper will collect and evaluate these effective training tricks in person ReID. By combining these tricks together, the model achieves 94.5% rank-1 and 85.9% mAP on Market1501 with only using global features. Our codes and models are available at https://github.com/michuanhaohao/reid-strong-baseline.

960 citations

Posted Content
TL;DR: This paper proposes a novel method called AlignedReID that extracts a global feature which is jointly learned with local features, and is the first to surpass human-level performance on Market1501 and CUHK03, two widely used Person ReID datasets.
Abstract: In this paper, we propose a novel method called AlignedReID that extracts a global feature which is jointly learned with local features. Global feature learning benefits greatly from local feature learning, which performs an alignment/matching by calculating the shortest path between two sets of local features, without requiring extra supervision. After the joint learning, we only keep the global feature to compute the similarities between images. Our method achieves rank-1 accuracy of 94.4% on Market1501 and 97.8% on CUHK03, outperforming state-of-the-art methods by a large margin. We also evaluate human-level performance and demonstrate that our method is the first to surpass human-level performance on Market1501 and CUHK03, two widely used Person ReID datasets.

426 citations

Journal ArticleDOI
TL;DR: Extended experiments show that BNNeck can boost the baseline, and the baseline can improve the performance of existing state-of-the-art methods.
Abstract: This study proposes a simple but strong baseline for deep person re-identification (ReID). Deep person ReID has achieved great progress and high performance in recent years. However, many state-of-the-art methods design complex network structures and concatenate multi-branch features. In the literature, some effective training tricks briefly appear in several papers or source codes. The present study collects and evaluates these effective training tricks in person ReID. By combining these tricks, the model achieves 94.5% rank-1 and 85.9% mean average precision on Market1501 with only using the global features of ResNet50. The performance surpasses all existing global- and part-based baselines in person ReID. We propose a novel neck structure named as batch normalization neck (BNNeck). BNNeck adds a batch normalization layer after global pooling layer to separate metric and classification losses into two different feature spaces because we observe they are inconsistent in one embedding space. Extended experiments show that BNNeck can boost the baseline, and our baseline can improve the performance of existing state-of-the-art methods. Our codes and models are available at: https://github.com/michuanhaohao/reid-strong-baseline

373 citations

Journal ArticleDOI
Hao Luo1, Wei Jiang1, Xuan Zhang1, Xing Fan1, Jingjing Qian1, Chi Zhang1 
TL;DR: A novel method named Dynamically Matching Local Information (DMLI) that could dynamically align local information without requiring extra supervision is proposed that could achieve better performance, especially when encountering the human pose misalignment caused by inaccurate person detection boxes.

166 citations

Journal ArticleDOI
TL;DR: A convolutional neural network called SphereReID is proposed adopting Sphere Softmax and training a single model end-to-end with a new warming-up learning rate schedule on four challenging datasets including Market-1501, DukeMTMC-reID, CHHK-03, and CUHK-SYSU.

163 citations


Cited by
More filters
Proceedings ArticleDOI
Guanshuo Wang1, Yufeng Yuan, Xiong Chen, Jiwei Li, Xi Zhou1 
15 Oct 2018
TL;DR: Comprehensive experiments implemented on the mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03 indicate that the proposed end-to-end feature learning strategy robustly achieves state-of-the-art performances and outperforms any existing approaches by a large margin.
Abstract: The combination of global and partial features has been an essential solution to improve discriminative performances in person re-identification (Re-ID) tasks. Previous part-based methods mainly focus on locating regions with specific pre-defined semantics to learn local representations, which increases learning difficulty but not efficient or robust to scenarios with large variances. In this paper, we propose an end-to-end feature learning strategy integrating discriminative information with various granularities. We carefully design the Multiple Granularity Network (MGN), a multi-branch deep network architecture consisting of one branch for global feature representations and two branches for local feature representations. Instead of learning on semantic regions, we uniformly partition the images into several stripes, and vary the number of parts in different local branches to obtain local feature representations with multiple granularities. Comprehensive experiments implemented on the mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03 indicate that our method robustly achieves state-of-the-art performances and outperforms any existing approaches by a large margin. For example, on Market-1501 dataset in single query mode, we obtain a top result of Rank-1/mAP=96.6%/94.2% with this method after re-ranking.

1,050 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: A simple and efficient baseline for person re-identification with deep neural networks by combining effective training tricks together, which achieves 94.5% rank-1 and 85.9% mAP on Market1501 with only using global features.
Abstract: This paper explores a simple and efficient baseline for person re-identification (ReID). Person re-identification (ReID) with deep neural networks has made progress and achieved high performance in recent years. However, many state-of-the-arts methods design complex network structure and concatenate multi-branch features. In the literature, some effective training tricks are briefly appeared in several papers or source codes. This paper will collect and evaluate these effective training tricks in person ReID. By combining these tricks together, the model achieves 94.5% rank-1 and 85.9% mAP on Market1501 with only using global features. Our codes and models are available at https://github.com/michuanhaohao/reid-strong-baseline.

960 citations

Posted Content
TL;DR: A powerful AGW baseline is designed, achieving state-of-the-art or at least comparable performance on twelve datasets for four different Re-ID tasks, and a new evaluation metric (mINP) is introduced, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re- ID system for real applications.
Abstract: Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.

737 citations

Journal ArticleDOI
TL;DR: A simple approach which consists of two homogeneous branches to predict pixel-wise objectness scores and re-ID features allows \emph{FairMOT} to obtain high levels of detection and tracking accuracy and outperform previous state-of-the-arts by a large margin on several public datasets.
Abstract: There has been remarkable progress on object detection and re-identification (re-ID) in recent years which are the key components of multi-object tracking. However, little attention has been focused on jointly accomplishing the two tasks in a single network. Our study shows that the previous attempts ended up with degraded accuracy mainly because the re-ID task is not fairly learned which causes many identity switches. The unfairness lies in two-fold: (1) they treat re-ID as a secondary task whose accuracy heavily depends on the primary detection task. So training is largely biased to the detection task but ignores the re-ID task; (2) they use ROI-Align to extract re-ID features which is directly borrowed from object detection. However, this introduces a lot of ambiguity in characterizing objects because many sampling points may belong to disturbing instances or background. To solve the problems, we present a simple approach \emph{FairMOT} which consists of two homogeneous branches to predict pixel-wise objectness scores and re-ID features. The achieved fairness between the tasks allows \emph{FairMOT} to obtain high levels of detection and tracking accuracy and outperform previous state-of-the-arts by a large margin on several public datasets. The source code and pre-trained models are released at this https URL.

507 citations

Posted Content
TL;DR: This paper proposes a novel method called AlignedReID that extracts a global feature which is jointly learned with local features, and is the first to surpass human-level performance on Market1501 and CUHK03, two widely used Person ReID datasets.
Abstract: In this paper, we propose a novel method called AlignedReID that extracts a global feature which is jointly learned with local features. Global feature learning benefits greatly from local feature learning, which performs an alignment/matching by calculating the shortest path between two sets of local features, without requiring extra supervision. After the joint learning, we only keep the global feature to compute the similarities between images. Our method achieves rank-1 accuracy of 94.4% on Market1501 and 97.8% on CUHK03, outperforming state-of-the-art methods by a large margin. We also evaluate human-level performance and demonstrate that our method is the first to surpass human-level performance on Market1501 and CUHK03, two widely used Person ReID datasets.

426 citations