scispace - formally typeset
Search or ask a question
Author

Hao Su

Bio: Hao Su is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Computer science & Point cloud. The author has an hindex of 57, co-authored 302 publications receiving 55902 citations. Previous affiliations of Hao Su include Philips & Jiangxi University of Science and Technology.


Papers
More filters
Posted Content
TL;DR: SyncSpecCNN as discussed by the authors proposes a spectral convolutional neural network for 3D shape part segmentation and keypoint prediction, which enables weight sharing by parameterizing kernels in the spectral domain spanned by graph laplacian eigenbases.
Abstract: In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, so that annotations such as part segment or keypoint are nothing but 0-1 indicator vertex functions. Compared with images that are 2D grids, shape graphs are irregular and non-isomorphic data structures. To enable the prediction of vertex functions on them by convolutional neural networks, we resort to spectral CNN method that enables weight sharing by parameterizing kernels in the spectral domain spanned by graph laplacian eigenbases. Under this setting, our network, named SyncSpecCNN, strive to overcome two key challenges: how to share coefficients and conduct multi-scale analysis in different parts of the graph for a single shape, and how to share information across related but different shapes that may be represented by very different graphs. Towards these goals, we introduce a spectral parameterization of dilated convolutional kernels and a spectral transformer network. Experimentally we tested our SyncSpecCNN on various tasks, including 3D shape part segmentation and 3D keypoint prediction. State-of-the-art performance has been achieved on all benchmark datasets.

33 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the rational design and tandem synthesis of three asymmetric giant gemini surfactants (AGGSs) of complex macromolecular structures based on polyhedral oligomeric silsesquioxane (POSS).

33 citations

Journal ArticleDOI
TL;DR: The mild condition, high efficiency, and broad functional group tolerance of thiol-Michael chemistry should further expand the scope of POSS-based giant surfactants with unparalleled possibilities for head surface chemistry manipulation, which provides numerous opportunities for nanofabrication by the direct self-assembly of giant Surfactants.

32 citations

Journal ArticleDOI
TL;DR: This work introduces VA-Point-MVSNet, a novel visibility-aware point-based deep framework for multi-view stereo (MVS), which directly processes the target scene as point clouds and allows higher accuracy, more computational efficiency and more flexibility than cost-volume-based counterparts.
Abstract: We introduce VA-Point-MVSNet, a novel visibility-aware point-based deep framework for multi-view stereo (MVS). Distinct from existing cost volume approaches, our method directly processes the target scene as point clouds. More specifically, our method predicts the depth in a coarse-to-fine manner. We first generate a coarse depth map, convert it into a point cloud and refine the point cloud iteratively by estimating the residual between the depth of the current iteration and that of the ground truth. Our network leverages 3D geometry priors and 2D texture information jointly and effectively by fusing them into a feature-augmented point cloud, and processes the point cloud to estimate the 3D flow for each point. This point-based architecture allows higher accuracy, more computational efficiency and more flexibility than cost-volume-based counterparts. Furthermore, our visibility-aware multi-view feature aggregation allows the network to aggregate multi-view appearance cues while taking into account visibility. Experimental results show that our approach achieves a significant improvement in reconstruction quality compared with state-of-the-art methods on the DTU and the Tanks and Temples dataset. The code of VA-Point-MVSNet proposed in this work will be released at https://github.com/callmeray/PointMVSNet .

32 citations

Journal ArticleDOI
TL;DR: This review aims to provide an update on the potential and continued growth of the MRI-guided stereotactic neurosurgical techniques by describing the state of the art in MR conditional stereootactic devices including manual and robotic-assisted.
Abstract: Recent technological developments in magnetic resonance imaging (MRI) and stereotactic techniques have significantly improved surgical outcomes. Despite the advantages offered by the conventional MRI-guided stereotactic neurosurgery, the robotic-assisted stereotactic approach has potential to further improve the safety and accuracy of neurosurgeries. This review aims to provide an update on the potential and continued growth of the MRI-guided stereotactic neurosurgical techniques by describing the state of the art in MR conditional stereotactic devices including manual and robotic-assisted. The paper also presents a detailed overview of MRI-guided stereotactic devices, MR conditional actuators and encoders used in MR conditional robotic-assisted stereotactic devices. The review concludes with several research challenges and future perspectives, including actuator and sensor technique, MR image guidance, and robot design issues.

31 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations