scispace - formally typeset
Search or ask a question
Author

Hao Yu

Bio: Hao Yu is an academic researcher from Beijing University of Chemical Technology. The author has contributed to research in topics: Medicine & Nanotechnology. The author has an hindex of 4, co-authored 4 publications receiving 130 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An easy synthesis method is developed to construct core-shell GNR@LDH nanostructure with GNRs and layered double hydroxides (LDHs), which is a significant enhanced conversion efficiency compared with the reported gold nanorods-based PTT materials.
Abstract: Photothermal conversion efficiency (η) of gold nanorods (GNRs) can be tuned by enlarging the aspect ratio and forming the core–shell structure. Herein, an easy synthesis method is developed to construct the core–shell GNR@LDH nanostructure with GNRs and layered double hydroxides (LDHs). The interaction between Au and LDHs results some electron deficiency on the surface of Au and the more electrons induce more thermal energy conversion. The η value of GNR@LDH can reach up to 60% under the 808 nm laser irradiation, which is a significant enhanced conversion efficiency compared with the reported GNR-based photothermal therapy materials. CTAB (cetyltrimethyl ammonium bromide) can be replaced totally during the synthesis process, and GNRs maintain a good dispersion in LDHs. This core–shell composite GNR@LDH can be applied in photothermal, antibacterial, tumor therapy and biological imaging with low dosage and nontoxicity.

79 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the portable and smart devices integrated with nanomaterials for monitoring heavy metal ions (HMIs) and summarize the miniaturization, portability, and commercialization of HMIs detection devices.
Abstract: With increasing concerns of ecological environment, safe drinkable water and healthy food, the detection for heavy metal ions (HMIs) becomes an attractive research field. On the basis of optical, electrical and other signals from nanomaterials, many interesting methods and portable devices for detection of HMIs are growing flourishingly. In this review, we focus on the portable and smart devices integrated with nanomaterials for monitoring HMIs. The interesting design of the miniaturization, portability, and commercialization of HMIs detection devices are summarized and introduced comprehensively.

64 citations

Journal ArticleDOI
TL;DR: It is found that ferric ions can accelerate the mimic enzymatic ability of 2, 6-diaminopurine (DAP) modified AuNPs, and the method based on DAP-AuNPs has a good sensitivity and wider quantitative range and will be helpful to do urine test at home.
Abstract: Gold nanoparticles (AuNPs) is an important kind of nanozymes and a variety of its artificial enzymatic activities have been reported, such as oxidase, peroxidase, and superoxide dismutase. The DNA with poly purine-modified AuNPs shows an enhancement peroxidase activity compared with poly pyrimidine-modified AuNPs. In this work, purine derivatives are modified on the surface of AuNPs. The peroxidase-like activity of AuNPs is dependent on the chemical structure of the molecules capped on the surface. We find that ferric ions can accelerate the mimic enzymatic ability of 2, 6-diaminopurine (DAP) modified AuNPs. The enhanced catalytic activity comes from the synergistic reaction of AuNPs and ferric ions. The cooperative system can be applied to measure hemoglobin and red blood cells in urine with better sensitivity. Generally, there is no or few red blood cells in human urine. The presence of blood in the urine is closely related with serious diseases, for example chronic nephrotic syndrome and urinary system tumors. Compared the commercial urine test paper, the method based on DAP-AuNPs has a good sensitivity and wider quantitative range and will be helpful to do urine test at home.

29 citations

Journal ArticleDOI
TL;DR: The flower-like structure of ZnMgAl-LDH has a rough surface, covered with lysozyme with a perfect ring, and presents good antibaterial properties and promotes wound healing of mice, and lyso@ZnM gAl- LDH presents better antibacterial activity than the binary LDHs.

25 citations

Journal ArticleDOI
TL;DR: AIE-active photosensitizers have been developed with biocompatibility, effective reactive oxygen species (ROS) generation, and superior absorption, bringing about great interest for applications in oncotherapy as discussed by the authors .

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review systematically introduces the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years.
Abstract: Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.

1,549 citations

Journal ArticleDOI
Yuan Chen1, Yujie Gao1, Yue Chen1, Liu Liu1, Anchun Mo1, Qiang Peng1 
TL;DR: A comprehensive understanding of various PTAs is required for the better application of PTT in antibacterial treatment and the PTT-involved multifunctional theranostics nanoplatforms and the potential approaches for reducing the side effects are discussed.

229 citations

Journal ArticleDOI
TL;DR: This review focuses on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection.
Abstract: Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.

182 citations

Journal ArticleDOI
TL;DR: In this article, a review on the nanomaterial immobilized enzymes and their applications is presented, focusing on the advantages of enzymes and the features of enzyme immobilization nanocarriers.

162 citations

Journal ArticleDOI
15 Apr 2021-ACS Nano
TL;DR: In this article, a carbon-iron oxide nanohybrids with rough surfaces (RCF) is developed for NIR-II light-responsive synergistic antibacterial therapy.
Abstract: Infections caused by multidrug resistant bacteria are still a serious threat to human health. It is of great significance to explore effective alternative antibacterial strategies. Herein, carbon-iron oxide nanohybrids with rough surfaces (RCF) are developed for NIR-II light-responsive synergistic antibacterial therapy. RCF with excellent photothermal property and peroxidase-like activity could realize synergistic photothermal therapy (PTT)/chemodynamic therapy (CDT) in the NIR-II biowindow with improved penetration depth and low power density. More importantly, RCF with rough surfaces shows increased bacterial adhesion, thereby benefiting both CDT and PTT through effective interaction between RCF and bacteria. In vitro antibacterial experiments demonstrate a broad-spectrum synergistic antibacterial effect of RCF against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus), and methicillin-resistant Staphylococcus aureus (MRSA). In addition, satisfactory biocompatibility makes RCF a promising antibacterial agent. Notably, the synergistic antibacterial performances in vivo could be achieved employing the rat wound model with MRSA infection. The current study proposes a facile strategy to construct antibacterial agents for practical antibacterial applications by the rational design of both composition and morphology. RCF with low power density NIR-II light responsive synergistic activity holds great potential in the effective treatment of drug-resistant bacterial infections.

152 citations