scispace - formally typeset
Search or ask a question
Author

Haofei Zhao

Other affiliations: Chinese Academy of Sciences
Bio: Haofei Zhao is an academic researcher from University of Science and Technology Beijing. The author has contributed to research in topics: Materials science & Catalysis. The author has an hindex of 10, co-authored 24 publications receiving 854 citations. Previous affiliations of Haofei Zhao include Chinese Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: The first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte.
Abstract: Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long-cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn-ion battery has a depth of discharge of ≈100% for the cathode and 66% for the anode, and delivers an impressive high-rate of 50 C (discharge in 60 s), long-term durability of 2000 cycles at 20 C, and unprecedented energy density ≈115 Wh kg-1 , together with a peak power density ≈5.1 kW kg-1 (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high-rate and stable properties are correlated with the 2D fast ion-migration pathways and the introduced intercalation pseudocapacitance.

534 citations

Journal ArticleDOI
TL;DR: In this paper, a simple aqueous solution route has been used to prepare mercaptoacetic acid attached CuInS2 quantum dots, and core-shell CuS2-Mn doped CdS quantum dot sensitized solar cells are assembled and a power conversion efficiency of 5.38% is obtained under AM1.5 (100 mW cm(-2)) illumination.

159 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and effective ball-milling combined calcination method has been developed to prepare MoS2/CdS photocatalysts for visible-light-driven water splitting into H-2 for the first time.
Abstract: A simple and effective ball-milling combined calcination method has been developed to prepare MoS2/CdS photocatalysts for visible-light-driven water splitting into H-2 for the first time. The photo-cataysts exhibit very high photocatalytic activities. A H-2 evolution rate up to 1315 mu mol h(-1) has been achieved based on 0.9 mol% MoS2/CdS (FT) photocatalyst (PT is the abbreviation of pretreatment), which is much higher than 488 mu mol h(-1) for the 0.2 wt% Pt/CdS (PT) photocatalyst. In the meantime, this photocatalyst exhibits good anti-photocorrosion property. The ball-milling procedure makes the starting material, (NH4)(2)MoS4, disperse uniformly on the surface of CdS nanoparticles. Further calcination treatment leads to complete decomposition of (NH4)(2)MoS4 to afford MoS2/CdS photocatalysts with intimate contacts between the two components. The pretreatment of CdS also has important positive effect on photocatalytic activity. Similar reactions by attempting different kinds of commercial CdS products have been carried out, indicating this preparation method is universal. (C) 2012 Elsevier B.V. All rights reserved.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the average structure of LiNi0.5Mn1.5O4 was investigated during the first cycle (3.5-4.9 V) at room temperature, and two types of local atomic-level migration of transition metals (TM) ions in the cathode were observed.
Abstract: Application of high-voltage spinel LiNi0.5Mn1.5O4 cathode material is the closest and the most realistic approach to meeting the midterm goal of lithium-ion batteries for electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs). However, this application has been hampered by long-standing issues, such as capacity degradation and poor first-cycle Coulombic efficiency of LiNi0.5Mn1.5O4 cathode material. Although it is well-known that the structure of LiNi0.5Mn1.5O4 into which Li ions are reversibly intercalated plays a critical role in the above issues, performance degradation related to structural changes, particularly in the first cycle, are not fully understood. Here, we report detailed investigations of local atomic-level and average structure of LiNi0.5Mn1.5O4 during first cycle (3.5–4.9 V) at room temperature. We observed two types of local atomic-level migration of transition metals (TM) ions in the cathode of a well-prepared LiNi0.5Mn1.5O4//Li half-cell during first charge via an aberrati...

138 citations

Journal ArticleDOI
TL;DR: In this paper, surface engineering of Ni-Pt nanoalloys with a facile method by varying the Ni doping concentration and oleylamine/oleicacid surfactant mix is presented.
Abstract: Surface engineering is known as an effective strategy to enhance the catalytic properties of Pt-based nanomaterials. Herein, we report on surface engineering Ni-Pt nanoalloys with a facile method by varying the Ni doping concentration and oleylamine/oleicacid surfactant-mix. The alloy-composition, exposed facet condition, and surface lattice strain are, thereby manipulated to optimize the catalytic efficiency of such nanoalloys for methanol oxidation reaction (MOR). Exemplary nanoalloys including Ni0.69Pt0.31 truncated octahedrons, Ni0.45Pt0.55 nanomultipods and Ni0.20Pt0.80 nanoflowers are thoroughly characterized, with a commercial Pt/C catalyst as a common benchmark. Their variations in MOR catalytic efficiency are significant: 2.2 A/mgPt for Ni0.20Pt0.80 nanoflowers, 1.2 A/mgPt for Ni0.45Pt0.55 nanomultipods, 0.7 A/mgPt for Ni0.69Pt0.31 truncated octahedrons, and 0.6 A/mgPt for the commercial Pt/C catalysts. Assisted by density functional theory calculations, we correlate these observed catalysis-variations particularly to the intriguing presence of surface interplanar-strains, such as {111} facets with an interplanar-tensile-strain of 2.6% and {200} facets with an interplanar-tensile-strain of 3.5%, on the Ni0.20Pt0.80 nanoflowers.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in rechargeable aqueous zinc-ion batteries (ZIBs) is presented, highlighting the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms.
Abstract: Although current high-energy-density lithium-ion batteries (LIBs) have taken over the commercial rechargeable battery market, increasing concerns about limited lithium resources, high cost, and insecurity of organic electrolyte scale-up limit their further development. Rechargeable aqueous zinc-ion batteries (ZIBs), an alternative battery chemistry, have paved the way not only for realizing environmentally benign and safe energy storage devices but also for reducing the manufacturing costs of next-generation batteries. This Review underscores recent advances in aqueous ZIBs; these include the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms. We also present recent advanced techniques that aim at overcoming the current issues in aqueous ZIB systems. This Review on the future perspectives and research directions will provide a guide for future aqueous ZIB study.

1,370 citations

Journal ArticleDOI
Qipeng Lu1, Yifu Yu1, Qinglang Ma1, Bo Chen1, Hua Zhang1 
TL;DR: Recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed.
Abstract: Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed.

1,124 citations

Journal ArticleDOI
TL;DR: This review summarizes the current trends and provides guidelines towards achieving next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions.
Abstract: Commercial lithium-ion (Li-ion) batteries suffer from low energy density and do not meet the growing demands of the energy storage market. Therefore, building next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life is of outmost importance. To achieve smaller and lighter next-generation rechargeable Li and Li-ion batteries that can outperform commercial Li-ion batteries, several new energy storage chemistries are being extensively studied. In this review, we summarize the current trends and provide guidelines towards achieving this goal, by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions. We discuss the choice of active materials, practically achievable energy densities and challenges faced by the respective battery systems. Furthermore, strategies to overcome remaining challenges for achieving energy characteristics are addressed in the hope of providing a useful and balanced assessment of current status and perspectives of rechargeable Li and Li-ion batteries.

1,086 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and expensive and therefore expensive and expensive process of designing and installing solar panels.
Abstract: Graham H. Carey,† Ahmed L. Abdelhady,‡ Zhijun Ning, Susanna M. Thon, Osman M. Bakr,‡ and Edward H. Sargent*,† †Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ‡Division of Physical Sciences and Engineering, Solar & Photovoltaics Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States

1,036 citations