scispace - formally typeset
Search or ask a question
Author

Happy Agarwal

Bio: Happy Agarwal is an academic researcher from VIT University. The author has contributed to research in topics: Nanoparticle & Silver nanoparticle. The author has an hindex of 14, co-authored 23 publications receiving 1120 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the synthesis and characterization methods used for green synthesis of ZnO NPs using different biological sources is presented, including plants, fungus, bacteria, and algae.

669 citations

Journal ArticleDOI
TL;DR: The present biosynthesis approach is rapid, inexpensive and eco-friendly and it yielded highly stable ZnO NPs with significant antioxidant and anticancer potential for the treatment of lung cancer and subsequent therapeutic applications.

258 citations

Journal ArticleDOI
TL;DR: Different nanoparticle attachment to gram + and gram - bacterial surface and different mechanism adopted by nanoparticle for bacterial control are highlighted.

241 citations

Journal ArticleDOI
TL;DR: The present study focuses on the differential uptake of nanoparticles into cells and the anti-inflammatory mechanism adopted by the nanoparticles synthesized by green routes and gives a concise literature review of the various green sources used for the synthesis of nanoparticle and the mechanism of action of each nanoparticle.

170 citations

Journal ArticleDOI
TL;DR: The antibacterial activity of selenium nanoparticles was found to be significantly effective against Proteus sp.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted and their production methods, physicochemical characterization, and pharmacokinetics are reviewed.
Abstract: Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.

629 citations

Journal ArticleDOI
TL;DR: This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Abstract: The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.

459 citations

Journal ArticleDOI
TL;DR: This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where it is predicted that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities.
Abstract: Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350–380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60–90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli , due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.

397 citations

Journal ArticleDOI
TL;DR: In this article, an ecofriendly, easy, one-step, non-toxic and inexpensive approach is used, where aqueous plant extract acts as a reducing as well as stabilizing agent of Silver Nanoparticles.

380 citations

Journal ArticleDOI
TL;DR: In this paper, the principles of green chemistry and their application in plant-mediated synthesis of nanoparticles and their recent applications are reviewed. But the use of biological materials such as plants is usually safe.
Abstract: Green synthesis of nanoparticles has many potential applications in environmental and biomedical fields. Green synthesis aims in particular at decreasing the usage of toxic chemicals. For instance, the use of biological materials such as plants is usually safe. Plants also contain reducing and capping agents. Here we present the principles of green chemistry, and we review plant-mediated synthesis of nanoparticles and their recent applications. Nanoparticles include gold, silver, copper, palladium, platinum, zinc oxide, and titanium dioxide.

337 citations