scispace - formally typeset
Search or ask a question
Author

Harald C. Gall

Bio: Harald C. Gall is an academic researcher from University of Zurich. The author has contributed to research in topics: Source code & Software development. The author has an hindex of 55, co-authored 213 publications receiving 10403 citations. Previous affiliations of Harald C. Gall include Vienna University of Technology & University of Vienna.


Papers
More filters
Proceedings ArticleDOI
24 Aug 2009
TL;DR: This paper studied cross-project defect prediction models on a large scale and identified factors that do influence the success of cross- project predictions, and derived decision trees that can provide early estimates for precision, recall, and accuracy before a prediction is attempted.
Abstract: Prediction of software defects works well within projects as long as there is a sufficient amount of data available to train any models. However, this is rarely the case for new software projects and for many companies. So far, only a few have studies focused on transferring prediction models from one project to another. In this paper, we study cross-project defect prediction models on a large scale. For 12 real-world applications, we ran 622 cross-project predictions. Our results indicate that cross-project prediction is a serious challenge, i.e., simply using models from projects in the same domain or with the same process does not lead to accurate predictions. To help software engineers choose models wisely, we identified factors that do influence the success of cross-project predictions. We also derived decision trees that can provide early estimates for precision, recall, and accuracy before a prediction is attempted.

657 citations

Proceedings ArticleDOI
27 May 2019
TL;DR: A study conducted on observing software teams at Microsoft as they develop AI-based applications finds that various Microsoft teams have united this workflow into preexisting, well-evolved, Agile-like software engineering processes, providing insights about several essential engineering challenges that organizations may face in creating large-scale AI solutions for the marketplace.
Abstract: Recent advances in machine learning have stimulated widespread interest within the Information Technology sector on integrating AI capabilities into software and services. This goal has forced organizations to evolve their development processes. We report on a study that we conducted on observing software teams at Microsoft as they develop AI-based applications. We consider a nine-stage workflow process informed by prior experiences developing AI applications (e.g., search and NLP) and data science tools (e.g. application diagnostics and bug reporting). We found that various Microsoft teams have united this workflow into preexisting, well-evolved, Agile-like software engineering processes, providing insights about several essential engineering challenges that organizations may face in creating large-scale AI solutions for the marketplace. We collected some best practices from Microsoft teams to address these challenges. In addition, we have identified three aspects of the AI domain that make it fundamentally different from prior software application domains: 1) discovering, managing, and versioning the data needed for machine learning applications is much more complex and difficult than other types of software engineering, 2) model customization and model reuse require very different skills than are typically found in software teams, and 3) AI components are more difficult to handle as distinct modules than traditional software components --- models may be "entangled" in complex ways and experience non-monotonic error behavior. We believe that the lessons learned by Microsoft teams will be valuable to other organizations.

597 citations

Proceedings ArticleDOI
22 Sep 2003
TL;DR: An approach is introduced for populating a release history database that combines version data with bug tracking data and adds missing data not covered by version control systems such as merge points to obtain meaningful views showing the evolution of a software project.
Abstract: Version control and bug tracking systems contain large amounts of historical information that can give deep insight into the evolution of a software project. Unfortunately, these systems provide only insufficient support for a detailed analysis of software evolution aspects. We address this problem and introduce an approach for populating a release history database that combines version data with bug tracking data and adds missing data not covered by version control systems such as merge points. Then simple queries can be applied to the structured data to obtain meaningful views showing the evolution of a software project. Such views enable more accurate reasoning of evolutionary aspects and facilitate the anticipation of software evolution. We demonstrate our approach on the large open source project Mozilla that offers great opportunities to compare results and validate our approach.

593 citations

Journal ArticleDOI
TL;DR: The change distilling algorithm is presented, a tree differencing algorithm for fine-grained source code change extraction that approximates the minimum edit script 45 percent better than the original change extraction approach by Chawathe et al.
Abstract: A key issue in software evolution analysis is the identification of particular changes that occur across several versions of a program. We present change distilling, a tree differencing algorithm for fine-grained source code change extraction. For that, we have improved the existing algorithm by Chawathe et al. for extracting changes in hierarchically structured data. Our algorithm extracts changes by finding both a match between the nodes of the compared two abstract syntax trees and a minimum edit script that can transform one tree into the other given the computed matching. As a result, we can identify fine-grained change types between program versions according to our taxonomy of source code changes. We evaluated our change distilling algorithm with a benchmark that we developed, which consists of 1,064 manually classified changes in 219 revisions of eight methods from three different open source projects. We achieved significant improvements in extracting types of source code changes: Our algorithm approximates the minimum edit script 45 percent better than the original change extraction approach by Chawathe et al. We are able to find all occurring changes and almost reach the minimum conforming edit script, that is, we reach a mean absolute percentage error of 34 percent, compared to the 79 percent reached by the original algorithm. The paper describes both our change distilling algorithm and the results of our evolution.

566 citations

Proceedings ArticleDOI
16 Mar 1998
TL;DR: This work uses information in a release history of a system to uncover logical dependencies and change patterns among modules, identifying logical coupling among modules in such a way that potential structural shortcomings can be identified and further examined, pointing to restructuring or reengineering opportunities.
Abstract: Code-based metrics such as coupling and cohesion are used to measure a system's structural complexity. But dealing with large systems-those consisting of several millions of lines-at the code level faces many problems. An alternative approach is to concentrate on the system's building blocks such as programs or modules as the unit of examination. We present an approach that uses information in a release history of a system to uncover logical dependencies and change patterns among modules. We have developed the approach by working with 20 releases of a large Telecommunications Switching System. We use release information such as version numbers of programs, modules, and subsystems together with change reports to discover common change behavior (i.e. change patterns) of modules. Our approach identifies logical coupling among modules in such a way that potential structural shortcomings can be identified and further examined, pointing to restructuring or reengineering opportunities.

482 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Book
01 Dec 2006
TL;DR: Providing an in-depth examination of core text mining and link detection algorithms and operations, this text examines advanced pre-processing techniques, knowledge representation considerations, and visualization approaches.
Abstract: 1. Introduction to text mining 2. Core text mining operations 3. Text mining preprocessing techniques 4. Categorization 5. Clustering 6. Information extraction 7. Probabilistic models for Information extraction 8. Preprocessing applications using probabilistic and hybrid approaches 9. Presentation-layer considerations for browsing and query refinement 10. Visualization approaches 11. Link analysis 12. Text mining applications Appendix Bibliography.

1,628 citations