scispace - formally typeset
Search or ask a question
Author

Hari S. Viswanathan

Bio: Hari S. Viswanathan is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Oil shale & Hydraulic fracturing. The author has an hindex of 43, co-authored 186 publications receiving 5900 citations. Previous affiliations of Hari S. Viswanathan include University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the benefits and drawbacks of using CO2 as a working fluid for shale gas production were analyzed using a combination of new experimental and modeling data at multiple scales, and the potential advantages of CO2 including enhanced fracturing and fracture propagation, reduction of flow blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns.

589 citations

Journal ArticleDOI
TL;DR: In this paper, a generic integrated framework for optimizing CO2 sequestration and enhanced oil recovery based on known parameter distributions for a depleted oil reservoir in Texas is developed, which consists of a multiphase reservoir simulator coupled with geologic and statistical models.
Abstract: CO2-enhanced oil recovery (CO2-EOR) is a technique for commercially producing oil from depleted reservoirs by injecting CO2 along with water. Because a large portion of the injected CO2 remains in place, CO2-EOR is an option for permanently sequestering CO2. This study develops a generic integrated framework for optimizing CO2 sequestration and enhanced oil recovery based on known parameter distributions for a depleted oil reservoir in Texas. The framework consists of a multiphase reservoir simulator coupled with geologic and statistical models. An integrated simulation of CO2–water–oil flow and reactive transport is conducted, followed by a global sensitivity and response surface analysis, for optimizing the CO2-EOR process. The results indicate that the reservoir permeability, porosity, thickness, and depth are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The distance between injection and production wells and the sequence of alternating CO2...

292 citations

Journal ArticleDOI
TL;DR: It is found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales.
Abstract: Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in the literature. For the wide pressure range investigated, the correction factor is always greater than 1, indicating Knudsen diffusion always plays a role on shale gas transport mechanisms in the reconstructed shales. Specifically, we found that most of the values of correction factor fall in the slip and transition regime, with no Darcy flow regime observed.

282 citations

Journal ArticleDOI
TL;DR: Dfn W orks is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport and example applications in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are included.

269 citations

Journal ArticleDOI
TL;DR: In this article, the authors identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells.

221 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
07 Nov 2019-Nature
TL;DR: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere, but barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.
Abstract: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways. Ten pathways for the utilization of carbon dioxide are reviewed, considering their potential scale, economics and barriers to implementation.

879 citations