scispace - formally typeset
Search or ask a question
Author

Hariharan Srikanth

Bio: Hariharan Srikanth is an academic researcher from University of South Florida. The author has contributed to research in topics: Magnetization & Magnetic nanoparticles. The author has an hindex of 48, co-authored 271 publications receiving 7581 citations. Previous affiliations of Hariharan Srikanth include Air Force Research Laboratory & Indian Institute of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first deposition of magnetic nanocomposite poly(methyl methacrylate)/polypyrrole bilayers from solution using spin-coating was reported, using a combination of dissolving the polymer and mixing fatty acid surfactant coated Fe3O4 nanoparticles.
Abstract: Magnetic nanoparticles embedded in polymer matrices are good examples of functional nanostructures with excellent potential for applications such as electromagnetic interference shielding, magneto-optical storage, biomedical sensing, flexible electronics, etc. Control over the dispersion of the nanoparticle phase embedded in a polymer matrix is critical and often challenging. To achieve excellent dispersion, competition between polymer–polymer and polymer–particle interactions have to be balanced to avoid clustering of particles in polymer nanocomposites. We report the first deposition of magnetic nanocomposite poly(methyl methacrylate)/polypyrrole bilayers from solution using spin-coating. Fe3O4 nanoparticles have been synthesized using a chemical co-precipitation route. Using a combination of dissolving the polymer and mixing fatty acid surfactant coated Fe3O4 nanoparticles, we have demonstrated the formation of nanocomposites with uniform nanoparticle dispersion. Cross-sectional scanning electron microscopy, transmission electron microscopy, and magnetic measurements confirm the excellent dispersion and superparamagnetic response. Low-frequency impedance measurements on these bilayers are also presented and analyzed.

281 citations

Journal ArticleDOI
TL;DR: In this article, the authors synthesized polymer nanocomposites of poly(methylmethacrylate) doped with varying concentrations of iron nanoparticles (∼20 nm in size).
Abstract: Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications like electromagnetic interference suppression. We have synthesized polymer nanocomposites of poly(methylmethacrylate) doped with varying concentrations of iron nanoparticles (∼20 nm in size). The iron nanoparticles were produced using a microwave plasma technique and have a natural oxide surface layer for passivation. These nanocomposites were processed using melt blending technique. The polymer processing conditions were optimized to achieve good uniform dispersion of the nanoparticles in the polymer matrix. The concentration and dispersion of nanoparticles were varied in a controlled way. Surface characterization with scanning electron microscopy indicates that, to a large extent, the iron nanoparticles are embedded in the bulk; the surface mainly showed features associated with the polymer surface. Static magnetic properties such as susceptibility and M–H loops were studied using a physi...

226 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of first and second-order magnetic phase transitions on the magnetocaloric effect and refrigerant capacity of charge-ordered Pr0.5Sr0.3 has been investigated.
Abstract: The influence of first- and second-order magnetic phase transitions on the magnetocaloric effect (MCE) and refrigerant capacity (RC) of charge-ordered Pr0.5Sr0.5MnO3 has been investigated. The system undergoes a paramagnetic to ferromagnetic transition at TC∼255 K followed by a ferromagnetic charge-disordered to antiferromagnetic charge-ordered transition at TCO∼165 K. While the first-order magnetic transition (FOMT) at TCO induces a larger MCE (6.8 J/kg K) limited to a narrower temperature range resulting in a smaller RC (168 J/kg), the second-order magnetic transition at TC induces a smaller MCE (3.2 J/kg K) but spreads over a broader temperature range resulting in a larger RC (215 J/kg). In addition, large magnetic and thermal hysteretic losses associated with the FOMT below TCO are detrimental to an efficient magnetic RC, whereas these effects are negligible below TC because of the second-order nature of this transition. These results are of practical importance in assessing the usefulness of charge-o...

188 citations

Journal ArticleDOI
TL;DR: Considering the proven advantages of high aspect ratio one-dimensional (1D) Fe3O4 nanostructures over their spherical and cubic counterparts, such as larger surface area, multisegmented capabilities, enhanced blood circulation time, and prolonged retention in tumors, this paper proposed a novel approach that utilizes this 1D nanostructure for enhanced hyperthermia.
Abstract: Despite magnetic hyperthermia being considered one of the most promising techniques for cancer treatment, until now spherical magnetite (Fe3O4) or maghemite (γ-Fe2O3) nanoparticles, which are the most commonly employed and only FDA approved materials, yield the limited heating capacity. Therefore, there is an increasing need for new strategies to improve the heating efficiency or the specific absorption rate (SAR) of these nanosystems. Recently, a large improvement in SAR has been reported for nanocubes of Fe3O4 relative to their spherical counterpart, as a result of their enhanced surface anisotropy and chainlike particle formation. Considering the proven advantages of high aspect ratio one-dimensional (1D) Fe3O4 nanostructures over their spherical and cubic counterparts, such as larger surface area, multisegmented capabilities, enhanced blood circulation time, and prolonged retention in tumors, we propose a novel approach that utilizes this 1D nanostructure for enhanced hyperthermia. Here, we demonstrat...

184 citations

Journal ArticleDOI
TL;DR: In this paper, a tri-critical point with critical exponents (β = 0.26−±-0.01, γ = 1.06−±−0.02) at the tricritical point was demonstrated.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: An updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs and selective diagnosis through disease marker molecules is presented.
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

3,112 citations

Journal ArticleDOI
TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.
Abstract: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology. A good example of the synergism between scientific discovery and technological development is the electronics industry, where discoveries of new semiconducting materials resulted in the evolution from vacuum tubes to diodes and transistors, and eventually to miniature chips. The progression of this technology led to the development * To whom correspondence should be addressed. B.L.C.: (504) 2801385 (phone); (504) 280-3185 (fax); bcushing@uno.edu (e-mail). C.J.O.: (504)280-6846(phone);(504)280-3185(fax);coconnor@uno.edu (e-mail). 3893 Chem. Rev. 2004, 104, 3893−3946

2,621 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nanostructures on the properties of supercapacitors including specific capacitance, rate capability and cycle stability is discussed, which may serve as a guideline for the next generation of super-capacitor electrode design.
Abstract: Supercapacitors have drawn considerable attention in recent years due to their high specific power, long cycle life, and ability to bridge the power/energy gap between conventional capacitors and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical properties in producing high-performance supercapacitors. In this review article, we describe the recent progress and advances in designing nanostructured supercapacitor electrode materials based on various dimensions ranging from zero to three. We highlight the effect of nanostructures on the properties of supercapacitors including specific capacitance, rate capability and cycle stability, which may serve as a guideline for the next generation of supercapacitor electrode design.

1,987 citations