scispace - formally typeset
Search or ask a question
Author

Harikrishna Erothu

Bio: Harikrishna Erothu is an academic researcher from K L University. The author has contributed to research in topics: Chemistry & Conductivity. The author has an hindex of 7, co-authored 14 publications receiving 282 citations. Previous affiliations of Harikrishna Erothu include Aston University & University of Bordeaux.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, ω-ethynyl-P3HT and α,ω-pentynyl P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignards derivatives.
Abstract: π-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3-hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized α-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ω-ethynyl-P3HT and α,ω-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.

134 citations

Journal ArticleDOI
TL;DR: A series of block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry as discussed by the authors.
Abstract: A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.

40 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed a novel solid polymer electrolyte (SPE) films based on poly(methyl methacrylate) (PMMA) and lithium acetate (CH3COOLi) with different weight ratios of PMMA:CH3 COOLi wt% (60:40, 70:30, 80:20 wt%) were prepared by solution casting technique.
Abstract: Novel solid polymer electrolyte (SPE) films based on poly(methyl methacrylate) (PMMA) and lithium acetate (CH3COOLi) with different weight ratios of PMMA:CH3COOLi wt% (60:40, 70:30, 80:20 wt%) were prepared by solution casting technique. XRD analysis confirmed the amorphous nature of Li–PMMA SPE films. FTIR analysis revealed the structural changes in polymer by complexation with Li salt. From the optical absorbance studies, the value of lowest energy band gap was found to be 3.06 eV for the composition, PMMA:CH3COOLi (60:40 wt%). From AC impedance studies, the highest value of ionic conductivity 8.21 × 10−5 S/cm at 303 K for the SPE film PMMA:CH3COOLi (60:40 wt%) is observed compared to the reported literature. From the results of Li–PMMA SPE film with high ionic conductivity, it is a promising material for the application of solid-state battery.

27 citations

Journal ArticleDOI
TL;DR: There is NaC-induced nanoscale aggregation of PNIPAM in its sol state and the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.
Abstract: The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.

26 citations

Journal ArticleDOI
01 Sep 2021-Optik
TL;DR: In this paper, a bio-degradable blended solid polymer electrolyte (BSPE) films made up of PVA:PS:(CH3COO)2Mg with different wt% ratios 50:50:00, 40:40:20, 35:35:30 and 30:30:40, were prepared using solution casting technique at room temperature.

23 citations


Cited by
More filters
01 Mar 1996
TL;DR: In this paper, a mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented, which traverses the weak- to strong-segregation regimes, is free of traditional approximations.
Abstract: A mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented. Our calculation, which traverses the weak- to strong-segregation regimes, is free of traditional approximations. Regions of stability are determined for disordered (DIS) melts and for ordered structures including lamellae (L), hexagonally packed cylinders (H), body-centered cubic spheres (QIm3m), close-packed spheres (CPS), and the bicontinuous cubic network with Ia3d symmetry (QIa3d). The CPS phase exists in narrow regions along the order−disorder transition for χN ≥ 17.67. Results suggest that the QIa3d phase is not stable above χN ∼ 60. Along the L/QIa3d phase boundaries, a hexagonally perforated lamellar (HPL) phase is found to be nearly stable. Our results for the bicontinuous Pn3m cubic (QPn3m) phase, known as the OBDD, indicate that it is an unstable structure in diblock melts. Earlier approximation schemes used to examine mean-field behavior are reviewed, and compa...

1,256 citations

Journal ArticleDOI
TL;DR: This critical review highlights the application of click chemistry, in particular the Cu(I)-catalyzed azide-alkyne cycloaddition, to the synthesis of a wide variety of new materials with possible uses as drug delivery agents, tissue engineering scaffolds, and dispersible nanomaterials.
Abstract: Click chemistry constitutes a class of reactions broadly characterized by efficiency, selectivity, and tolerance to a variety of solvents and functional groups. By far the most widely utilized of these efficient transformation reactions is the CuI-catalyzed azide–alkyne cycloaddition. This reaction has been creatively employed to facilitate the preparation of complex macromolecules, such as multiblock copolymers, shell or core cross-linked micelles, and dendrimers. This critical review highlights the application of click chemistry, in particular the CuI-catalyzed azide-alkyne cycloaddition, to the synthesis of a wide variety of new materials with possible uses as drug delivery agents, tissue engineering scaffolds, and dispersible nanomaterials (83 references).

707 citations

Journal ArticleDOI
TL;DR: Challenges and opportunities of ECM biomaterials are investigated for the design of organotypic models to study disease progression, for the ex vivo creation of engineered tissue and for the clinical translation of functional tissue reconstruction strategies in vivo.
Abstract: In tissue engineering and regenerative medicine, a biomaterial provides mechanical support and biochemical signals to encourage cell attachment and modulate cell behaviour. Nature’s template for a biomaterial is the extracellular matrix (ECM). The ECM contains intrinsic biochemical and mechanical cues that regulate cell phenotype and function in development, in homeostasis and in response to injury. The use of ECM-based materials in biomedical research has advanced from coating cell culture plates with purified ECM components to the design of ECM-mimicking biomaterials and the engineering of decellularized tissues aimed at recapitulating the dynamics, composition and structure of the ECM. In this Review, we highlight important matrix properties and functions in the context of tissue engineering and regenerative medicine, consider techniques such as proteomics for the investigation of matrix structure and composition and discuss different engineering strategies for the design of matrix-mimicking biomaterials. Tissue, whole organ and cell culture decellularization approaches are examined for their potential to preserve the tissue-specific biochemical composition and ultrastructure of the ECM and for the development of biomaterials that promote the formation of functional tissues in clinical applications. Finally, we investigate challenges and opportunities of ECM biomaterials for the design of organotypic models to study disease progression, for the ex vivo creation of engineered tissue and for the clinical translation of functional tissue reconstruction strategies in vivo. The extracellular matrix is nature’s template for an ideal biomaterial to guide tissue homeostasis and repair. In this Review, matrix-mimicking biomaterials and decellularized matrices are discussed for their potential to reconstruct and repair tissues in vitro and in vivo.

494 citations

Journal ArticleDOI
TL;DR: Current understanding of the processes occurring in organic mixed ionic–electronic conductors and their structure–property relations are described, and recent approaches that extend fundamental understanding and contribute to the advancement of materials are highlighted.
Abstract: Materials that efficiently transport and couple ionic and electronic charge are key to advancing a host of technological developments for next-generation bioelectronic, optoelectronic and energy storage devices. Here we highlight key progress in the design and study of organic mixed ionic–electronic conductors (OMIECs), a diverse family of soft synthetically tunable mixed conductors. Across applications, the same interrelated fundamental physical processes dictate OMIEC properties and determine device performance. Owing to ionic and electronic interactions and coupled transport properties, OMIECs demand special understanding beyond knowledge derived from the study of organic thin films and membranes meant to support either electronic or ionic processes only. We address seemingly conflicting views and terminology regarding charging processes in these materials, and highlight recent approaches that extend fundamental understanding and contribute to the advancement of materials. Further progress is predicated on multimodal and multi-scale approaches to overcome lingering barriers to OMIEC design and implementation. From optoelectronic to biomedical and energy storage applications, the interest in organic mixed ionic–electronic conductors is expanding. This Review describes current understanding of the processes occurring in these materials and their structure–property relations.

346 citations

Journal ArticleDOI
TL;DR: In this paper, the self-assembly of block copolymers (BCPs) in the presence of crystallization is reviewed, for BCPs in the bulk, thin films, single crystals and micelles.

320 citations