scispace - formally typeset
Search or ask a question
Author

Harish Krishnaswamy

Bio: Harish Krishnaswamy is an academic researcher from Columbia University. The author has contributed to research in topics: CMOS & Circulator. The author has an hindex of 33, co-authored 178 publications receiving 3373 citations. Previous affiliations of Harish Krishnaswamy include University of California, Santa Barbara & University of Dundee.
Topics: CMOS, Circulator, Wideband, Amplifier, Transmitter


Papers
More filters
Journal ArticleDOI
TL;DR: Staggered commutation enables time-reversal symmetry breaking within very small dimensions, resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time.
Abstract: Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal-oxide-semiconductor integrated circuit for the first time.

256 citations

Journal ArticleDOI
TL;DR: A fully integrated technique for wideband cancellation of transmitter (TX) self-interference (SI) in the RF domain is proposed for multiband frequency-division duplexing (FDD) and full-duplex (FD) wireless applications.
Abstract: A fully integrated technique for wideband cancellation of transmitter (TX) self-interference (SI) in the RF domain is proposed for multiband frequency-division duplexing (FDD) and full-duplex (FD) wireless applications. Integrated wideband SI cancellation (SIC) in the RF domain is accomplished through: 1) a bank of tunable, reconfigurable second-order high-Q RF bandpass filters in the canceller that emulate the antenna interface’s isolation (essentially frequency-domain equalization in the RF domain) and 2) a linear $N$ -path $G_m$ - $C$ filter implementation with embedded variable attenuation and phase shifting. A 0.8–1.4 GHz receiver (RX) with the proposed wideband SIC circuits is implemented in a 65 nm CMOS process. In measurement, $>20\;\text{MHz}\;20\;\text{dB}$ cancellation bandwidth (BW) is achieved across frequency-selective antenna interfaces: 1) a custom-designed LTE-like 0.780/0.895 GHz duplexer with TX/RX isolation peak magnitude of 30 dB, peak group delay of 11 ns, and 7 dB magnitude variation across the TX band for FDD and 2) a 1.4 GHz antenna pair for FD wireless with TX/RX isolation peak magnitude of 32 dB, peak group delay of 9 ns, and 3 dB magnitude variation over 1.36–1.38 GHz. For FDD, SIC enhances the effective out-of-band (OOB) IIP3 and IIP2 to $+\text{25}\text{-}27\;\text{dBm}$ and $+90\;\text{dBm}$ , respectively (enhancements of 8–10 and 29 dB, respectively). For FD, SIC eliminates RX gain compression for as high as $-8\;\text{dBm}$ of peak in-band (IB) SI, and enhances effective IB IIP3 and IIP2 by 22 and 58 dB.

187 citations

Journal ArticleDOI
TL;DR: Several generations of full duplex transceiver ICs are described that feature novel RF self-interference cancellation circuits, antenna cancellation techniques, and a non-magnetic CMOS circulator.
Abstract: Full duplex wireless has drawn significant interest in the recent past due to the potential for doubling network capacity in the physical layer and offering numerous other benefits at higher layers. However, the implementation of integrated full duplex radios is fraught with several fundamental challenges. Achieving the levels of self-interference cancellation required over the wide bandwidths mandated by emerging wireless standards is challenging in an integrated circuit implementation. The dynamic range limitations of integrated electronics restrict the transmitter power levels and receiver noise floor levels that can be supported in integrated full duplex radios. Advances in compact antenna interfaces for full duplex are also required. Finally, networks employing full duplex nodes will require a complete rethinking of the medium access control layer as well as cross-layer interaction and co-design. This article describes recent research results that address these challenges. Several generations of full duplex transceiver ICs are described that feature novel RF self-interference cancellation circuits, antenna cancellation techniques, and a non-magnetic CMOS circulator. Resource allocation algorithms and rate gain/improvement characterizations are also discussed for full duplex configurations involving IC-based nodes.

135 citations

Journal ArticleDOI
TL;DR: The analysis of performance metrics, such as loss, isolation, linearity, and tuning range, is presented in terms of the design parameters for the first CMOS nonmagnetic nonreciprocal passive circulator based on N-path filters.
Abstract: Recently, we demonstrated the first CMOS nonmagnetic nonreciprocal passive circulator based on N-path filters that uses time variance to break reciprocity. Here, the analysis of performance metrics, such as loss, isolation, linearity, and tuning range, is presented in terms of the design parameters. The analysis is verified by the measured performance of a 65-nm CMOS circulator prototype that exhibits 1.7 dB of loss in the transmitter-antenna (TX-ANT) and antenna-receiver (ANT-RX) paths, and has high isolation [TX–RX, up to 50 dB through tuning and 20-dB bandwidth (BW) of 32 MHz] and a tuning range of 610–850 MHz. Through an architectural feature specifically designed to enhance TX linearity, the circulator achieves an in-band TX-ANT input-referred third-order intercept point (IIP3) of +27.5 dBm, nearly two orders of magnitude higher than the ANT-RX IIP3 of +8.7 dBm. The circulator is also integrated with a self-interference-canceling full-duplex (FD) RX featuring an analog baseband (BB) SI canceller. The FD RX achieves 42-dB on-chip SI suppression across the circulator and analog BB domains over a 12-MHz signal BW. In conjunction with digital SI and its input-referred third-order intermodulation (IM3) cancellation, the FD RX demonstrates 85-dB overall SI suppression, enabling an FD link budget of −7-dBm TX average output power and −92-dBm noise floor.

125 citations

Journal ArticleDOI
TL;DR: This work shows that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to the authors' advantage to realize a new generation of magnet-free non-reciprocal components and exploits the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity.
Abstract: Recent research has explored the spatiotemporal modulation of permittivity to break Lorentz reciprocity in a manner compatible with integrated-circuit fabrication. However, permittivity modulation is inherently weak and accompanied by loss due to carrier injection, particularly at higher frequencies, resulting in large insertion loss, size, and/or narrow operation bandwidths. Here, we show that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to our advantage to realize a new generation of magnet-free non-reciprocal components. We exploit the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity. While directly associated with loss in static systems, we show that properly synchronized conductivity modulation enables loss-free, compact and extremely broadband non-reciprocity. We apply these concepts to obtain a wide range of responses, from isolation to gyration and circulation, and verify our findings by realizing a millimeter-wave (25 GHz) circulator fully integrated in complementary metal-oxide-semiconductor technology. Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.

114 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.

737 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices and discuss the future of this exciting research field.
Abstract: Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field. The progress on non-reciprocal photonic devices enabled by temporal modulation is reviewed.

673 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a wideband ultra wideband (UWB) communication protocol with a low EIRP level (−41.3dBm/MHz) for unlicensed operation between 3.1 and 10.6 GHz.
Abstract: Before the emergence of ultra-wideband (UWB) radios, widely used wireless communications were based on sinusoidal carriers, and impulse technologies were employed only in specific applications (e.g. radar). In 2002, the Federal Communication Commission (FCC) allowed unlicensed operation between 3.1–10.6 GHz for UWB communication, using a wideband signal format with a low EIRP level (−41.3dBm/MHz). UWB communication systems then emerged as an alternative to narrowband systems and significant effort in this area has been invested at the regulatory, commercial, and research levels.

452 citations

Journal ArticleDOI
18 Oct 2010
TL;DR: A fully-integrated 16-element 60-GHz phased-array receiver is implemented in IBM 0.12-μm SiGe BiCMOS technology and a detailed analysis of the noise trade-offs in the receiver array design is presented to motivate architectural choices.
Abstract: A phased-array transmitter (TX) for multi-Gb/s non-line-of-sight links in the four frequency channels of the IEEE 802.15.3c standard (58.32 to 64.8 GHz) is fully integrated in a 0.12-μm SiGe BiCMOS process. It consists of an up-conversion core followed by a 1:16 power distribution tree, 16 phase-shifting front-ends, and a digital control unit. The TX core is a two-step sliding-IF up-conversion chain with frequency synthesizer that features 40 dB of gain programmability, I/Q balance and LO leakage correction, and a modulator for 802.15.3c common-mode signaling. The tradeoffs involved in the implementation of a 1:16 power distribution network are analyzed and a hybrid passive/active distribution tree architecture is introduced. Each of the 16 front-ends consists of a balanced passive phase shifter and a variable-gain, 3-stage PA that features oP1dB programmability through the bias control of the its final stage. All of the chip features are digitally controllable and individual memory arrays are integrated at each front-end to enable fast beam steering through a high-speed parallel interface. The IC occupies 44 mm and is fully characterized on wafer. The TX delivers 9 to 13.5 dBm oPidB per element at 60.48 GHz with a total power consumption of 3.8 to 6.2 W. Each element attains a phase-shift range >360° with an amplitude variation <;±1 dB across phase settings and adjacent elements. Measurement results from a packaged IC in an antenna chamber are also presented including the demonstration of spatial power combining up to +40 dBm EIRP and 16-element radiation patterns.

445 citations