scispace - formally typeset
Search or ask a question
Author

Harjit S. Minhas

Bio: Harjit S. Minhas is an academic researcher from University of Essex. The author has contributed to research in topics: Glutathione & Glycation. The author has an hindex of 7, co-authored 8 publications receiving 1712 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Alpha-Oxoaldehydes were formed in early glycation from the degradation of glucose and Schiff's base adduct, which suggests that short periods of hyperglycaemia, as occur in impaired glucose tolerance, may be sufficient to increase the concentrations of alpha-oxoaldeHydes in vivo.
Abstract: The glycation of proteins by glucose has been linked to the development of diabetic complications and other diseases. Early glycation is thought to involve the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff's base and fructosamine adducts. The formation of the alpha-oxoaldehydes, glyoxal, methylglyoxal and 3-deoxyglucosone, in early glycation was investigated. Glucose (50 mM) degraded slowly at pH 7.4 and 37 degrees C to form glyoxal, methylglyoxal and 3-deoxyglucosone throughout a 3-week incubation period. Addition of t-BOC-lysine and human serum albumin increased the rate of formation of alpha-oxoaldehydes - except glyoxal and methylglyoxal concentrations were low with albumin, as expected from the high reactivity of glyoxal and methylglyoxal with arginine residues. The degradation of fructosyl-lysine also formed glyoxal, methylglyoxal and 3-deoxyglucosone. alpha-Oxoaldehyde formation was dependent on the concentration of phosphate buffer and availability of trace metal ions. This suggests that alpha-oxoaldehydes were formed in early glycation from the degradation of glucose and Schiff's base adduct. Since alpha-oxoaldehydes are important precursors of advanced glycation adducts, these adducts may be formed from early and advanced glycation processes. Short periods of hyperglycaemia, as occur in impaired glucose tolerance, may be sufficient to increase the concentrations of alpha-oxoaldehydes in vivo.

1,116 citations

Journal ArticleDOI
TL;DR: The AQC assay resolved structural and epimeric isomers of methylglyoxal-derived hydroimidazolones and THP, which were AGEs of short-to-intermediate stability under physiological conditions, with half-lives of 1-2 weeks.
Abstract: Glycation of proteins leads to the formation of early glycation adducts (fructosamine derivatives) and advanced glycation endproducts (AGEs). Formation of AGEs has been linked to the development of cataract, diabetic complications, uraemia, Alzheimer's disease and other disorders. AGEs are a group of compounds of diverse molecular structure and biological function. To characterize AGE-modified proteins used in studies of structural and functional effects of glycation, an assay was developed that surveys the content of early and advanced glycation adducts in proteins. The assay procedure involved enzymic hydrolysis of protein substrate, derivatization of the hydrolysate with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and HPLC of the resulting adducts with fluorimetric detection. Structural isomers of methylglyoxal-derived hydroimidazolone, glyoxal-derived hydroimidazolone, 3-deoxyglucosone-derived hydroimidazolone and N(delta)-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidin-2-yl)-ornithine (THP) were determined for the first time. AGEs with intrinsic fluorescence (argpyrimidine, pentosidine) were assayed without derivatization. Limits of detection were 2-17 pmol and levels of recovery were 50-99%, depending on the analyte. The AQC assay resolved structural and epimeric isomers of methylglyoxal-derived hydroimidazolones and THP. Hydroimidazolones, THP and argpyrimidine were AGEs of short-to-intermediate stability under physiological conditions, with half-lives of 1-2 weeks. Their measurement provides further insight into the glycation process. The assay was applied to the characterization of human serum albumin minimally and highly modified by N(epsilon)-carboxymethyl-lysine and N(epsilon)-(1-carboxyethyl)-lysine.

328 citations

Journal ArticleDOI
TL;DR: Impairment of α-oxoaldehyde detoxification is cytotoxic, and this may contribute to toxicity associated with GSH oxidation and S conjugation in oxidative stress and chemical toxicity, and to chronic pathogenesis associated with diabetes mellitus where there is oxidative stressand the formation of glyoxal, MG, and 3-DG is increased.

223 citations

Journal ArticleDOI
01 Dec 1998-Diabetes
TL;DR: The results implicate the potent glycating agent 3-DG as a teratogenic factor in diabetic embryopathy, and the anti-teratogenic effect of SOD administration appears to occur downstream of 3-GG formation, suggesting that 3- DG accumulation leads to superoxide-mediated embryopathy.
Abstract: The increased rate of embryonic dysmorphogenesis in diabetic pregnancy is correlated with the severity and duration of the concurrent hyperglycemia during early gestation. Whole embryo culture was used to investigate a possible association of hyperglycemia-induced disturbances of embryo development with tissue levels of the three alpha-oxoaldehydes: glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG). Rat embryos exposed to high glucose levels in vitro showed severe dysmorphogenesis and a 17-fold increased concentration of 3-DG compared with control embryos cultured in a low glucose concentration. Exogenous 3-DG (100 micromol/l) added to the medium of control cultures yielded an increased embryonic malformation rate and a 3-DG concentration similar to that of embryos cultured in high glucose. Addition of superoxide dismutase (SOD) to the culture medium decreased the malformation rates of embryos exposed to either high glucose or high 3-DG levels, but it did not decrease the high embryonic 3-DG concentrations caused by either agent. Our results implicate the potent glycating agent 3-DG as a teratogenic factor in diabetic embryopathy. In addition, the anti-teratogenic effect of SOD administration appears to occur downstream of 3-DG formation, suggesting that 3-DG accumulation leads to superoxide-mediated embryopathy.

65 citations

Journal ArticleDOI
TL;DR: The putative protein glycation cross-link cleaving agent N-phenacylthiazolium bromide (PTB) underwent hydrolysis and cyclic hemithioacetal formation under physiological conditions to form two isomeric 2,3-dihydro-4-formyl-2-hydroxy-2,phenyl-1,4-thiazines as mentioned in this paper.

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The well validated, as well as putative mechanisms involved in the development of diabetic complications are discussed and new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Abstract: It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.

1,915 citations

Journal ArticleDOI
TL;DR: The chemistry of glycation and AGEs is introduced and the mechanisms by which they mediate their toxicity are examined and the role of A GEs in the pathogenesis of retinopathy, cataract, atherosclerosis, neuropathy, nephropathy, diabetic embryopathy and impaired wound healing are considered.

1,316 citations

Journal ArticleDOI
TL;DR: Administration of the receptor decoy, sRAGE, is likely to sequester ligands, thereby preventing their interaction with other receptors in addition to RAGE, suggesting that, just as RAGE is a multiligand receptor, its ligands are also likely to recognize several receptors in mediating their biologic effects.
Abstract: Advanced glycation end products (AGEs), S100/calgranulins, HMGB1-proteins, amyloid-beta peptides, and the family of beta-sheet fibrils have been shown to contribute to a number of chronic diseases such as diabetes, amyloidoses, inflammatory conditions, and tumors by promoting cellular dysfunction via binding to cellular surface receptors. The receptor for AGEs (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules acting as counter-receptor for these diverse molecules. Engagement of RAGE converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The involvement of RAGE in pathophysiologic processes has been demonstrated in murine models of chronic disease using either a receptor decoy such as soluble RAGE (sRAGE), RAGE neutralizing antibodies, or a dominant-negative form of the receptor. Studies with RAGE-/- mice confirmed that RAGE contributes, at least in part, to the development of late diabetic complications, such as neuropathy and nephropathy, macrovascular disease, and chronic inflammation. Furthermore, deletion of RAGE provided protection from the lethal effects of septic shock caused by cecal ligation and puncture (CLP). In contrast, deletion of RAGE had no effect on the host response in delayed-type hypersensitivity (DTH). Despite the lack of effect seen in adaptive immunity by the deletion of RAGE, administration of the receptor decoy, sRAGE, still afforded a protective effect in RAGE-/- mice. Thus, sRAGE is likely to sequester ligands, thereby preventing their interaction with other receptors in addition to RAGE. These data suggest that, just as RAGE is a multiligand receptor, its ligands are also likely to recognize several receptors in mediating their biologic effects.

1,167 citations

Journal ArticleDOI
01 Jun 2008-Diabetes
TL;DR: There is now an increasing body of data to suggest that strategies involving a more targeted antioxidant approach, using agents that penetrate specific cellular compartments, may be the elusive additive therapy required to further optimize renoprotection in diabetes.
Abstract: It is postulated that localized tissue oxidative stress is a key component in the development of diabetic nephropathy. There remains controversy, however, as to whether this is an early link between hyperglycemia and renal disease or develops as a consequence of other primary pathogenic mechanisms. In the kidney, a number of pathways that generate reactive oxygen species (ROS) such as glycolysis, specific defects in the polyol pathway, uncoupling of nitric oxide synthase, xanthine oxidase, NAD(P)H oxidase, and advanced glycation have been identified as potentially major contributors to the pathogenesis of diabetic kidney disease. In addition, a unifying hypothesis has been proposed whereby mitochondrial production of ROS in response to chronic hyperglycemia may be the key initiator for each of these pathogenic pathways. This postulate emphasizes the importance of mitochondrial dysfunction in the progression and development of diabetes complications including nephropathy. A mystery remains, however, as to why antioxidants per se have demonstrated minimal renoprotection in humans despite positive preclinical research findings. It is likely that the utility of current study approaches, such as vitamin use, may not be the ideal antioxidant strategy in human diabetic nephropathy. There is now an increasing body of data to suggest that strategies involving a more targeted antioxidant approach, using agents that penetrate specific cellular compartments, may be the elusive additive therapy required to further optimize renoprotection in diabetes.

1,032 citations

Journal ArticleDOI
TL;DR: The glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs is discussed and the role of A GEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is discussed.
Abstract: During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

1,029 citations