scispace - formally typeset
Search or ask a question
Author

Harold G. Craighead

Bio: Harold G. Craighead is an academic researcher from Cornell University. The author has contributed to research in topics: Resonator & Reactive-ion etching. The author has an hindex of 101, co-authored 569 publications receiving 40357 citations. Previous affiliations of Harold G. Craighead include United States Naval Research Laboratory & Bell Labs.


Papers
More filters
Journal ArticleDOI
26 Jan 2007-Science
TL;DR: The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems and is demonstrated down to 8 × 10–4 electrons per root hertz.
Abstract: Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to 8 × 10 –4 electrons per root hertz. The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems.

2,769 citations

Journal ArticleDOI
TL;DR: This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.
Abstract: We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.

2,648 citations

Journal ArticleDOI
31 Jan 2003-Science
TL;DR: It is shown that arrays of zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution.
Abstract: Optical approaches for observing the dynamics of single molecules have required pico- to nanomolar concentrations of fluorophore in order to isolate individual molecules. However, many biologically relevant processes occur at micromolar ligand concentrations, necessitating a reduction in the conventional observation volume by three orders of magnitude. We show that arrays of zero-mode waveguides consisting of subwavelength holes in a metal film provide a simple and highly parallel means for studying single-molecule dynamics at micromolar concentrations with microsecond temporal resolution. We present observations of DNA polymerase activity as an example of the effectiveness of zero-mode waveguides for performing single-molecule experiments at high concentrations.

1,612 citations

Journal ArticleDOI
12 May 2000-Science
TL;DR: A nanofluidic channel device, consisting of many entropic traps, was designed and fabricated for the separation of long DNA molecules, suggesting the possibility of more practical integrated DNA analysis systems.
Abstract: A nanofluidic channel device, consisting of many entropic traps, was designed and fabricated for the separation of long DNA molecules. The channel comprises narrow constrictions and wider regions that cause size-dependent trapping of DNA at the onset of a constriction. This process creates electrophoretic mobility differences, thus enabling efficient separation without the use of a gel matrix or pulsed electric fields. Samples of long DNA molecules (5000 to ∼160,000 base pairs) were efficiently separated into bands in 15-millimeter-long channels. Multiple-channel devices operating in parallel were demonstrated. The efficiency, compactness, and ease of fabrication of the device suggest the possibility of more practical integrated DNA analysis systems.

904 citations

Journal ArticleDOI
TL;DR: Data indicate that device insertion promotes an early response proportional to device size and a sustained response that is independent of device size, geometry, and surface roughness, which may be associated with the amount of damage generated during insertion.

771 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations