scispace - formally typeset
Search or ask a question
Author

Harrie Tilmans

Bio: Harrie Tilmans is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Resonator & Wafer. The author has an hindex of 28, co-authored 95 publications receiving 4449 citations. Previous affiliations of Harrie Tilmans include University of Twente & IMEC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the design, modelling and performance characteristics of electrostatically driven vacuum-encapsulated polysilicon resonators are addressed, and an expression for the pull-in voltage of a beam is given.
Abstract: In this paper, the design, modelling and performance characteristics of electrostatically driven vacuum-encapsulated polysilicon resonators are addressed. A one-port configuration is preferably employed for excitation and detection of the vibration. Mechanical instability (pull-in) is discussed on the basis of the energy minimum principle. An expression for the pull-in voltage of a beam is given. The electromechanical behaviour in a limited frequency regime around the fundamental resonance is accurately modelled by an electric circuit consisting of a (static) capacitor shunted by a series (dynamic) RLC branch. The d.c. bias dependence of the circuit components and of the series resonance frequency has been experimentally investigated and is compared with the theory. The large-amplitude behaviour is discussed as well. The plate modulus and residual strain of boron-doped polysilicon are estimated from the resonance frequencies of microbridges of varying lengths. The feasibility of their application as resonant strain gauges is investigated. The 210 m long beams typically have an unloaded fundamental frequency of 324 kHz, a gauge factor of 2400 and an uncompensated temperature coefficient of -135 ppm 0C-1.

417 citations

Journal ArticleDOI
TL;DR: In this article, a closed-form expression for the pull-in voltage of fixed-fixed beams and fixed-free beams is derived starting from the known expression of a simple lumped spring-mass system.
Abstract: In this paper, a closed-form expression for the pull-in voltage of fixed–fixed beams and fixed–free beams is derived starting from the known expression of a simple lumped spring-mass system. The effects of partial electrode configuration, of axial stress, non-linear stiffening, charge re-distribution and fringing fields are all included in the final expression. Further, the results obtained are summarized and validated with other existing empirical and analytical models as well as with finite element simulation results. The model agrees well with finite element simulation results obtained with COVENTORWARE software.

398 citations

Journal ArticleDOI
TL;DR: In this article, the theory of bounded-parameter electromechanical transducers is examined theoretically with special regard to their dynamical behavior and equivalent circuits used to represent them, and the circuits are developed starting from basic EM-transduction principles and the electrical and mechanical equations of equilibrium.
Abstract: Lumped-parameter electromechanical transducers are examined theoretically with special regard to their dynamic electromechanical behaviour and equivalent circuits used to represent them. The circuits are developed starting from basic electromechanical transduction principles and the electrical and mechanical equations of equilibrium. Within the limits of the assumptions on boundary conditions, the theory presented is exact with no restrictions other than linearity. Elementary electrostatic, electromagnetic, and electrodynamic transducers are used to illustrate the basic theory. Exemplary devices include electro-acoustic receivers (e.g., a microphone) and actuators (e.g., a loudspeaker), electromechanical filters, vibration sensors, devices employing feedback, and force and displacement sensors. This paper forms part I of a set of two papers. Part II extends the theory and deals with distributed-parameter systems.

342 citations

Journal ArticleDOI
TL;DR: A review of micro resonant force gauges is presented in this article, where a theoretical description is given of gauges operating in a flexural mode of vibration, including a discussion of non-linear effects.
Abstract: A review of micro resonant force gauges is presented. A theoretical description is given of gauges operating in a flexural mode of vibration, including a discussion of non-linear effects. Gauge factor and quality factor are defined and their relevance is discussed. Performance issues such as sensitivity, stability and resolution are addressed. Design aspects, including the means for excitation and detection of the vibration, and examples of silicon microfabrication technologies are described.

272 citations

Journal ArticleDOI
TL;DR: In this article, the progress in RF-MEMS from a device and integration perspective is reviewed, and the worldwide state-of-the-art of RFMEMS devices including switches, variable capacitors, resonators and filters are described.
Abstract: Wireless communication has led to an explosive growth of emerging consumer and military applications of radio frequency (RF), microwave and millimeter wave circuits and systems. Future personal (hand-held) and ground communications systems as well as communications satellites necessitate the use of highly integrated RF front-ends, featuring small size, low weight, high performance and low cost. Continuing chip scaling has contributed to the extent that off-chip, bulky passive RF components, such as high-Q inductors, ceramic and SAW filters, varactor diodes and discrete PIN diode switches, have become limiting. Micro-machining or MEMS technology is now rapidly emerging as an enabling technology to yield a new generation of high-performance RF-MEMS passives to replace these off-chip passives in wireless communication (sub)systems. This paper reviews the progress in RF-MEMS from a device and integration perspective. The worldwide state-of-the-art of RF-MEMS devices including switches, variable capacitors, resonators and filters are described. Next, it is stipulated how integration of RF-MEMS passives with other passives (as inductors, LC filters, SAW devices, couplers and power dividers) and, active circuitry (ASICs, RFICs) can lead to the so-called RF-MEMS system-in-a-package (RF-MEMS-SiP) modules. The evolution of the RF-MEMS-SiP technology is illustrated using IMEC's microwave multi-layer thin-film MCM-D technology which today already serves as a technology platform for RF-SiP.

250 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Lithium ion batteries, in which lithium ions shuttle between an insertion cathode and an insertion anode (e.g., carbon), emerged as the power source of choice for the highperformance rechargeable-battery market.
Abstract: The worldwide thirst for portable consumer electronics in the 1990s had an enormous impact on portable power. Lithium ion batteries, in which lithium ions shuttle between an insertion cathode (e.g., LiCoO2) and an insertion anode (e.g., carbon), emerged as the power source of choice for the highperformance rechargeable-battery market. The performance advantages were so significant that lithium ion batteries not only replaced Ni-Cd batteries but left the purported successor technology, nickel-metal hydride, in its wake.1 The thick metal plates of * To whom correspondence should be addressed. J.W.L: e-mail, jwlong@ccs.nrl.navy.mil; telephone, (+1)202-404-8697. B.D.: e-mail, bdunn@ucla.edu; telephone, (+1)310-825-1519. D.R.R.: e-mail, rolison@nrl.navy.mil; telephone, (+1)202-767-3617. H.S.W.: e-mail, white@chem.utah.edu; telephone, (+1)810-585-6256. † Naval Research Laboratory. ‡ UCLA. § University of Utah. 4463 Chem. Rev. 2004, 104, 4463−4492

1,167 citations

Journal ArticleDOI
TL;DR: An overview of research activities in the field of fluid components or systems built with microfabrication technologies is given in this paper, focusing on the fluidic behaviour of the various devices, such as valves, pumps and flow sensors as well as the possibilities and pitfalls related to the modelling of these devices using simple flow theory.
Abstract: An overview is given of research activities in the field of fluid components or systems built with microfabrication technologies. This review focuses on the fluidic behaviour of the various devices, such as valves, pumps and flow sensors as well as the possibilities and pitfalls related to the modelling of these devices using simple flow theory. Finally, a number of microfluidic systems are described and comments on future trends are given.

1,153 citations

BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations

Patent
28 Mar 2006
TL;DR: In this paper, an efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices, which can be field reconfigured to accommodate different display formats and/or application functions.
Abstract: An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process. IMods can be used as test structures for the evaluation of residual stress in deposited materials.

782 citations

Journal ArticleDOI
TL;DR: In this article, a 2 μm-thick phosphorus-doped low-pressure chemical-vapor-deposited (LPCVD) polysilicon film was used for exciting the resonance.

719 citations