scispace - formally typeset
Search or ask a question
Author

Harro Seelaar

Bio: Harro Seelaar is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: Frontotemporal dementia & Medicine. The author has an hindex of 25, co-authored 63 publications receiving 9260 citations. Previous affiliations of Harro Seelaar include Erasmus University Medical Center.


Papers
More filters
Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs6, J. Raphael Gibbs1, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten3, John C. van Swieten4, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz1, Sonja W. Scholz9, Sonja W. Scholz10, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez6, Dena G. Hernandez1, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen4, David Sondervan4, Harro Seelaar3, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein9, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink4, Stuart Pickering-Brown5, Huw R. Morris22, Huw R. Morris2, Huw R. Morris12, Pentti J. Tienari7, Bryan J. Traynor1, Bryan J. Traynor9 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
01 Sep 2011-Brain
TL;DR: The revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotmporal lobar degeneration and reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations.
Abstract: Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, 'possible' behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). 'Probable' behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia 'with definite frontotemporal lobar degeneration' requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer's disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met 'possible' criteria, and 104 (76%) met criteria for 'probable' behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with 'possible' and 'probable' criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.

3,706 citations

Journal ArticleDOI
TL;DR: Recently, a new protein involved in familial ALS, fused in sarcoma (FUS), has been found in FTLD patients with ubiquitin-positive and TDP-43-negative inclusions.
Abstract: Frontotemporal dementia (FTD) is the second most common young-onset dementia and is clinically characterised by progressive behavioural change, executive dysfunction and language difficulties. Three clinical syndromes, behavioural variant FTD, semantic dementia and progressive non-fluent aphasia, form part of a clinicopathological spectrum named frontotemporal lobar degeneration (FTLD). The classical neuropsychological phenotype of FTD has been enriched by tests exploring Theory of Mind, social cognition and emotional processing. Imaging studies have detailed the patterns of atrophy associated with different clinical and pathological subtypes. These patterns offer some diagnostic utility, while measures of progression of atrophy may be of use in future trials. 30e50% of FTD is familial, and mutations in two genes, microtubule associated protein tau and Progranulin (GRN), account for about half of these cases. Rare defects in VCP, CHMP2B, TARDP and FUS genes have been found in a small number of families. Linkage to chromosome 9p13.2e21.3 has been established in familial FTD with motor neuron disease, although the causative gene is yet to be identified. Recent developments in the immunohistochemistry of FTLD, and also in amyotrophic lateral sclerosis (ALS), have led to a new pathological nomenclature. The two major groups are those with tau-positive inclusions (FTLD-tau) and those with ubiquitin-positive and TAR DNA-binding protein of 43 kDa (TDP-43) positive inclusions (FTLD-TDP). Recently, a new protein involved in familial ALS, fused in sarcoma (FUS), has been found in FTLD patients with ubiquitin-positive and TDP-43-negative inclusions. In this review, the authors discuss recent clinical, neuropsychological, imaging, genetic and pathological developments that have changed our understanding of FTD, its classification and criteria. The potential to establish an early diagnosis, predict underlying pathology during life and quantify disease progression will all be required for diseasespecific therapeutic trials in the future.

552 citations

Journal ArticleDOI
Vivianna M. Van Deerlin1, Patrick M. A. Sleiman1, Maria Martinez-Lage1, Maria Martinez-Lage2, Alice Chen-Plotkin1, Li-San Wang1, Neill R. Graff-Radford3, Dennis W. Dickson3, Rosa Rademakers3, Bradley F. Boeve3, Murray Grossman1, Steven E. Arnold1, David M. A. Mann4, Stuart Pickering-Brown4, Harro Seelaar5, Peter Heutink6, John C. van Swieten5, Jill R. Murrell7, Bernardino Ghetti7, Salvatore Spina8, Salvatore Spina7, Jordan Grafman9, John R. Hodges10, Maria Grazia Spillantini11, Sid Gilman12, Andrew P. Lieberman12, Jeffrey Kaye13, Randall L. Woltjer13, Eileen H. Bigio14, M.-Marsel Mesulam14, Safa Al-Sarraj15, Claire Troakes15, Roger N. Rosenberg16, Charles L. White17, Isidro Ferrer18, Albert Lladó18, Manuela Neumann19, Hans A. Kretzschmar20, Christine M. Hulette21, Kathleen A. Welsh-Bohmer21, Bruce L. Miller22, Ainhoa Alzualde, Adolfo López de Munain, Ann C. McKee23, Ann C. McKee24, Marla Gearing25, Allan I. Levey25, James J. Lah25, John Hardy26, Jonathan D. Rohrer26, Tammaryn Lashley26, Ian R. A. Mackenzie27, Howard Feldman27, Ronald L. Hamilton28, Steven T. DeKosky29, Julie van der Zee30, Julie van der Zee31, Samir Kumar-Singh30, Samir Kumar-Singh31, Christine Van Broeckhoven30, Christine Van Broeckhoven31, Richard Mayeux32, Jean Paul G. Vonsattel32, Juan C. Troncoso33, Jillian J. Kril34, John B.J. Kwok35, Glenda M. Halliday35, Thomas D. Bird36, Paul G. Ince37, Pamela J. Shaw37, Nigel J. Cairns38, John C. Morris38, Catriona McLean39, Charles DeCarli, William G. Ellis40, Stefanie H. Freeman41, Matthew P. Frosch41, John H. Growdon41, Daniel P. Perl, Mary Sano24, Mary Sano42, David A. Bennett43, Julie A. Schneider43, Thomas G. Beach, Eric M. Reiman44, Bryan K. Woodruff3, Jeffrey L. Cummings45, Harry V. Vinters45, Carol A. Miller46, Helena C. Chui46, Irina Alafuzoff47, Irina Alafuzoff48, Päivi Hartikainen47, Danielle Seilhean49, Douglas Galasko50, Eliezer Masliah50, Carl W. Cotman51, M. Teresa Tũón, M. Cristina Caballero Martínez, David G. Munoz52, Steven L. Carroll53, Daniel C. Marson53, Peter Riederer54, Nenad Bogdanovic55, Gerard D. Schellenberg1, Hakon Hakonarson1, John Q. Trojanowski1, Virginia M.-Y. Lee1 
University of Pennsylvania1, Autonomous University of Barcelona2, Mayo Clinic3, University of Manchester4, Erasmus University Rotterdam5, VU University Amsterdam6, Indiana University – Purdue University Indianapolis7, University of Siena8, National Institutes of Health9, Neuroscience Research Australia10, University of Cambridge11, University of Michigan12, Oregon Health & Science University13, Northwestern University14, King's College London15, University of Texas at Dallas16, University of Texas Southwestern Medical Center17, University of Barcelona18, University of Zurich19, Ludwig Maximilian University of Munich20, Duke University21, University of California, San Francisco22, Boston University23, Veterans Health Administration24, Emory University25, University College London26, University of British Columbia27, University of Pittsburgh28, University of Virginia29, University of Antwerp30, Flanders Institute for Biotechnology31, Columbia University32, Johns Hopkins University33, University of Sydney34, University of New South Wales35, University of Washington36, University of Sheffield37, Washington University in St. Louis38, Alfred Hospital39, University of California, Davis40, Harvard University41, Icahn School of Medicine at Mount Sinai42, Rush University Medical Center43, University of Arizona44, University of California, Los Angeles45, University of Southern California46, University of Eastern Finland47, Uppsala University48, Pierre-and-Marie-Curie University49, University of California, San Diego50, University of California, Irvine51, University of Toronto52, University of Alabama at Birmingham53, University of Würzburg54, Karolinska Institutet55
TL;DR: It is found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM 106B, which implicate variants in TMEM106B as a strong risk factor for FTLD, suggesting an underlying pathogenic mechanism.
Abstract: Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.

479 citations

Journal ArticleDOI
TL;DR: The findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways ( link to 11q14) are potentially involved in FTD.
Abstract: Summary Background Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes— MAPT , GRN , and C9orf72 —have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p −8 ) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p −8 ). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1·05 × 10 −8 ; odds ratio=1·204 [95% CI 1·11–1·30]), rs9268856 (p=5·51 × 10 −9 ; 0·809 [0·76–0·86]) and rs1980493 (p value=1·57 × 10 −8 , 0·775 [0·69–0·86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38 / CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10 −7 ; 0·814 [0·71–0·92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis . Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center.

282 citations


Cited by
More filters
Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs6, J. Raphael Gibbs1, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten4, John C. van Swieten3, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz1, Sonja W. Scholz9, Sonja W. Scholz10, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez1, Dena G. Hernandez6, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen4, David Sondervan4, Harro Seelaar3, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein10, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink4, Stuart Pickering-Brown5, Huw R. Morris22, Huw R. Morris2, Huw R. Morris12, Pentti J. Tienari7, Bryan J. Traynor10, Bryan J. Traynor1 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
TL;DR: The Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity, and two levels of certainty are delineated: clinically established PD and probable PD.
Abstract: This document presents the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (PD). The Movement Disorder Society PD Criteria are intended for use in clinical research but also may be used to guide clinical diagnosis. The benchmark for these criteria is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise in PD diagnosis. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies on three categories of diagnostic features: absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of the PD diagnosis). Two levels of certainty are delineated: clinically established PD (maximizing specificity at the expense of reduced sensitivity) and probable PD (which balances sensitivity and specificity). The Movement Disorder Society criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, the Movement Disorder Society criteria will need continuous revision to accommodate these advances.

3,421 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal Article
TL;DR: The International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease as discussed by the authors have been proposed for clinical diagnosis, which are intended for use in clinical research, but may also be used to guide clinical diagnosis.
Abstract: Objective To present the International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease. Background Although several diagnostic criteria for Parkinson9s disease have been proposed, none have been officially adopted by an official Parkinson society. Moreover, the commonest-used criteria, the UK brain bank, were created more than 25 years ago. In recognition of the lack of standard criteria, the MDS initiated a task force to design new diagnostic criteria for clinical Parkinson9s disease. Methods/Results The MDS-PD Criteria are intended for use in clinical research, but may also be used to guide clinical diagnosis. The benchmark is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise. Although motor abnormalities remain central, there is increasing recognition of non-motor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the MDS-PD Criteria retain motor parkinsonism as the core disease feature, defined as bradykinesia plus rest tremor and/or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies upon three categories of diagnostic features; absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of PD diagnosis). Two levels of certainty are delineated: Clinically-established PD (maximizing specificity at the expense of reduced sensitivity), and Probable PD (which balances sensitivity and specificity). Conclusion The MDS criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, criteria will need continuous revision to accommodate these advances. Disclosure: Dr. Postuma has received personal compensation for activities with Roche Diagnostics Corporation and Biotie Therapies. Dr. Berg has received research support from Michael J. Fox Foundation, the Bundesministerium fur Bildung und Forschung (BMBF), the German Parkinson Association and Novartis GmbH.

1,655 citations