scispace - formally typeset
Search or ask a question
Author

Harry A. Atwater

Bio: Harry A. Atwater is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Plasmon & Silicon. The author has an hindex of 114, co-authored 989 publications receiving 66281 citations. Previous affiliations of Harry A. Atwater include National Taiwan University & Stanford University.
Topics: Plasmon, Silicon, Solar cell, Thin film, Racism


Papers
More filters
Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
TL;DR: Observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 μm in plasmon waveguides consisting of closely spaced silver rods are presented.
Abstract: Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 μm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.

2,305 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices.
Abstract: We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed.

1,881 citations

Journal ArticleDOI
TL;DR: In this paper, a point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission and switching through chain networks such as corners and tee structures is possible at high efficiencies.
Abstract: The further integration of optical devices will require the fabrication of waveguides for electromagnetic energy below the diffraction limit of light. We investigate the possibility of using arrays of closely spaced metal nanoparticles for this purpose. Coupling between adjacent particles sets up coupled plasmon modes that give rise to coherent propagation of energy along the array. A point dipole analysis predicts group velocities of energy transport that exceed 0.1c along straight arrays and shows that energy transmission and switching through chain networks such as corners (see Figure) and tee structures is possible at high efficiencies. Radiation losses into the far field are expected to be negligible due to the near-field nature of the coupling, and resistive heating leads to transmission losses of about 6 dB/lm for gold and silver particles. We analyze macroscopic analogues operating in the microwave regime consisting of closely spaced metal rods by experiments and full field electrodynamic simulations. The guiding structures show a high confinement of the electromagnetic energy and allow for highly variable geometries and switching. Also, we have fabricated gold nanoparticle arrays using electron beam lithography and atomic force microscopy manipulation. These plasmon waveguides and switches could be the smallest devices with optical functionality.

1,650 citations

Journal ArticleDOI
TL;DR: An ultrathin (260 nm) plasmonic super absorber consisting of a metal-insulator-metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays yields broadband and polarization-independent resonant light absorption over the entire visible spectrum.
Abstract: Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal–insulator–metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400–700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption.

1,532 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations