scispace - formally typeset
Search or ask a question
Author

Harry Buhrman

Bio: Harry Buhrman is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Quantum algorithm & Quantum entanglement. The author has an hindex of 48, co-authored 266 publications receiving 10993 citations. Previous affiliations of Harry Buhrman include Centrum Wiskunde & Informatica & Aarhus University.


Papers
More filters
Journal ArticleDOI
TL;DR: Several complexity measures for Boolean functions are discussed: certificate complexity, sensitivity, block sensitivity, and the degree of a representing or approximating polynomial, and how they give bounds for the decision tree complexity of Boolean functions on deterministic, randomized, and quantum computers.

767 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties, and they give a test that distinguishes any two unknown quantum fingerprints with high probability.
Abstract: Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity We optimize several aspects of our scheme

760 citations

Journal ArticleDOI
TL;DR: This work examines the number of queries to input variables that a quantum algorithm requires to compute Boolean functions on {0,1}N in the black-box model and gives asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings.
Abstract: We examine the number of queries to input variables that a quantum algorithm requires to compute Boolean functions on {0,1}N in the black-box model. We show that the exponential quantum speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch and Jozsa, Simon, and Shor cannot be obtained for any total function: if a quantum algorithm computes some total Boolean function f with small error probability using T black-box queries, then there is a classical deterministic algorithm that computes f exactly with O(Ts6) queries. We also give asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our results are a quantum extension of the so-called polynomial method, which has been successfully applied in classical complexity theory, and also a quantum extension of results by Nisan about a polynomial relationship between randomized and deterministic decision tree complexity.

590 citations

Journal ArticleDOI
TL;DR: The area of quantum communication complexity is reviewed, and it is shown how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science.
Abstract: Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. Until recently the common notion of computing was based on classical mechanics, and did not take into account all the possibilities that physically-realizable computing devices offer in principle. The field gained momentum after Peter Shor developed an efficient algorithm for factoring numbers, demonstrating the potential computing powers that quantum computing devices can unleash. In this review we study the information counterpart of computing. It was realized early on by Holevo, that quantum bits, the quantum mechanical counterpart of classical bits, cannot be used for efficient transformation of information, in the sense that arbitrary k-bit messages can not be compressed into messages of k − 1 qubits. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.

572 citations

Posted Content
TL;DR: In this article, it was shown that the exponential quantum speed-up obtained for partial functions (i.e., problems involving a promise on the input) by Deutsch and Jozsa and by Simon cannot be obtained for any total function, and that there is a classical deterministic algorithm that computes some total Boolean function f with bounded-error using T black-box queries.
Abstract: We examine the number T of queries that a quantum network requires to compute several Boolean functions on {0,1}^N in the black-box model. We show that, in the black-box model, the exponential quantum speed-up obtained for partial functions (i.e. problems involving a promise on the input) by Deutsch and Jozsa and by Simon cannot be obtained for any total function: if a quantum algorithm computes some total Boolean function f with bounded-error using T black-box queries then there is a classical deterministic algorithm that computes f exactly with O(T^6) queries. We also give asymptotically tight characterizations of T for all symmetric f in the exact, zero-error, and bounded-error settings. Finally, we give new precise bounds for AND, OR, and PARITY. Our results are a quantum extension of the so-called polynomial method, which has been successfully applied in classical complexity theory, and also a quantum extension of results by Nisan about a polynomial relationship between randomized and deterministic decision tree complexity.

522 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
16 Mar 2000-Nature
TL;DR: In information processing, as in physics, the classical world view provides an incomplete approximation to an underlying quantum reality that can be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.
Abstract: In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can--in principle now, but probably eventually in practice--be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.

3,080 citations

MonographDOI
20 Apr 2009
TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Abstract: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.

2,965 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems.
Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed to be able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, for example, the number of digits of the integer to be factored.

2,856 citations