scispace - formally typeset
Search or ask a question
Author

Harry F. Dovey

Bio: Harry F. Dovey is an academic researcher from Stanford University. The author has contributed to research in topics: P3 peptide & Protease. The author has an hindex of 6, co-authored 9 publications receiving 4217 citations.

Papers
More filters
Journal ArticleDOI
24 Sep 1992-Nature
TL;DR: It is demonstrated that Aβ is produced and released both in vivo and in vitro, and new opportunities for developing diagnostic tests for Alzheimer's disease and therapeutic strategies aimed at reducing the cerebral deposition of Aβ are offered.
Abstract: CEREBRAL deposition of the β-amyloid peptide (Aβ) is an invariant feature of Alzheimer's disease. Since the original isola-tion and characterization of αβ (ref. 1) and the subsequent cloning of its precursor protein2–5, no direct evidence for the actual production of discrete Aβ has been reported6–11. Here we investigate whether Aβ is present in human biological fluids using antibodies specific for an epitope within Aβ that spans the site of normal constitutive cleavage12,13. These antibodies were used to construct a sandwich type enzyme-linked immunosorbent assay that detects Aβ in cerebrospinal fluid, plasma and conditioned medium of human mixed-brain cells grown in vitro (see also ref. 14). By affinity chromatography, we have purified and sequenced Aβ and a novel Aβ fragment from human cerebrospinal fluid and conditioned medium of human mixed-brain cell cultures. These findings demonstrate that Aβ is produced and released both in vivo and in vitro. These observations offer new opportunities for developing diagnostic tests for Alzheimer's disease and therapeutic strategies aimed at reducing the cerebral deposition of Aβ.

1,870 citations

Journal ArticleDOI
02 Dec 1999-Nature
TL;DR: A membrane-bound enzyme activity that cleaves full-length APP at the β-secretase cleavage site is described and found to be the predominant β-cleavage activity in human brain, and it is found that human brain β- secretase is a new membrane- bound aspartic proteinase.
Abstract: Proteolytic processing of the amyloid precursor protein (APP) generates amyloid β (Aβ) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease Cleavage by β-secretase at the amino terminus of the Aβ peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of β-cleaved soluble APP1, and a corresponding cell-associated carboxy-terminal fragment Cleavage of the C-terminal fragment by γ-secretase(s) leads to the formation of Aβ The pathogenic mutation K670M671 → N670L671 at the β-secretase cleavage site in APP2, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased β-secretase cleavage of the mutant substrate3 Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the β-secretase cleavage site, and find it to be the predominant β-cleavage activity in human brain We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for β-secretase Cloning and expression of the enzyme reveals that human brain β-secretase is a new membrane-bound aspartic proteinase

1,777 citations

Journal ArticleDOI
14 Sep 1989-Nature
TL;DR: The deduced amino-terminal sequence of APP is iden-tical to the sequence of a cell-secreted protease inhibitor, protease nexin-II (PN-II)8, and it is concluded that the secreted form of APP with the Kunitz protease inhibitors domain is PN-II.
Abstract: The A4 protein (or beta-protein) is a 42- or 43-amino-acid peptide present in the extracellular neuritic plaques in Alzheimer's disease and is derived from a membrane-bound amyloid protein precursor (APP). Three forms of APP have been described and are referred to as APP695, APP751 and APP770, reflecting the number of amino acids encoded for by their respective complementary DNAs. The two larger APPs contain a 57-amino-acid insert with striking homology to the Kunitz family of protease inhibitors. Here we report that the deduced amino-terminal sequence of APP is identical to the sequence of a cell-secreted protease inhibitor, protease nexin-II (PN-II). To confirm this finding, APP751 and APP695 cDNAs were over-expressed in the human 293 cell line, and the secreted N-terminal extracellular domains of these APPs were purified to near homogeneity from the tissue-culture medium. The relative molecular mass and high-affinity binding to dextran sulphate of secreted APP751 were consistent with that of PN-II. Functionally, secreted APP751 formed stable, non-covalent, inhibitory complexes with trypsin. Secreted APP695 did not form complexes with trypsin. We conclude that the secreted form of APP with the Kunitz protease inhibitor domain is PN-II.

470 citations

Journal ArticleDOI
TL;DR: It is suggested that this cellular system may be useful for mechanistic studies of A beta generation and possibly for the development of therapeutic agents to treat AD.
Abstract: Cells overexpressing the beta-amyloid precursor protein possessing a mutation found in familial Alzheimer's disease overproduce beta-amyloid peptide (A beta). Because these findings were based on immunological identification, we have chemically characterized the peptides produced. Purified A beta fragments from the conditioned media of these cells were found to have N-terminal sequence consistent with the A beta found in cerebral plaques. Mass spectrometric data demonstrated a series of A beta fragments consistent with those found in Alzheimer's disease (AD); the major species corresponding to A beta(1-40). Significantly, a longer fragment corresponding to A beta(1-42) was found. These findings suggest that this cellular system may be useful for mechanistic studies of A beta generation and possibly for the development of therapeutic agents to treat AD.

77 citations

Journal ArticleDOI
31 Dec 1971-Nature
TL;DR: It is shown that hamster–mouse hybrids synthesized both hamster and mouse ribosomal RNA, and this paper is the first to show this result in detail.
Abstract: SOMATIC cell hybridization has revealed important facts about gene activity, differentiation and expression of genetic information in cells1. Eliceiri and Green2 investigated the production of 28S ribosomal RNA in human–mouse hybrid cells and could detect only mouse ribosomal RNA. In a more recent study, however, Stanners, Eliceiri and Green3 showed that hamster–mouse hybrids synthesized both hamster and mouse ribosomal RNA.

59 citations


Cited by
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
TL;DR: It is hypothesized that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer's disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Abeta-derived diffusible ligands acting upon particular neural signal transduction pathways.
Abstract: Aβ1–42 is a self-associating peptide whose neurotoxic derivatives are thought to play a role in Alzheimer’s pathogenesis. Neurotoxicity of amyloid β protein (Aβ) has been attributed to its fibrillar forms, but experiments presented here characterize neurotoxins that assemble when fibril formation is inhibited. These neurotoxins comprise small diffusible Aβ oligomers (referred to as ADDLs, for Aβ-derived diffusible ligands), which were found to kill mature neurons in organotypic central nervous system cultures at nanomolar concentrations. At cell surfaces, ADDLs bound to trypsin-sensitive sites and surface-derived tryptic peptides blocked binding and afforded neuroprotection. Germ-line knockout of Fyn, a protein tyrosine kinase linked to apoptosis and elevated in Alzheimer’s disease, also was neuroprotective. Remarkably, neurological dysfunction evoked by ADDLs occurred well in advance of cellular degeneration. Without lag, and despite retention of evoked action potentials, ADDLs inhibited hippocampal long-term potentiation, indicating an immediate impact on signal transduction. We hypothesize that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer’s disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Aβ-derived diffusible ligands acting upon particular neural signal transduction pathways.

3,608 citations

Journal ArticleDOI
TL;DR: Data support the involvement of ApoE ϵ4 in the pathogenesis of late-onset familial and sporadic AD and suggest it may operate as a susceptibility gene (risk factor) for the clinical expression of AD.
Abstract: Apolipoprotein E, type epsilon 4 allele (APOE epsilon 4), is associated with late-onset familial Alzheimer's disease (AD). There is high avidity and specific binding of amyloid beta-peptide with the protein ApoE. To test the hypothesis that late-onset familial AD may represent the clustering of sporadic AD in families large enough to be studied, we extended the analyses of APOE alleles to several series of sporadic AD patients. APOE epsilon 4 is significantly associated with a series of probable sporadic AD patients (0.36 +/- 0.042, AD, versus 0.16 +/- 0.027, controls [allele frequency estimate +/- standard error], p = 0.00031). Spouse controls did not differ from CEPH grandparent controls from the Centre d'Etude du Polymorphisme Humain (CEPH) or from literature controls. A large combined series of autopsy-documented sporadic AD patients also demonstrated highly significant association with the APOE epsilon 4 allele (0.40 +/- 0.026, p < or = 0.00001). These data support the involvement of ApoE epsilon 4 in the pathogenesis of late-onset familial and sporadic AD. ApoE isoforms may play an important role in the metabolism of beta-peptide, and APOE epsilon 4 may operate as a susceptibility gene (risk factor) for the clinical expression of AD.

3,551 citations