scispace - formally typeset
Search or ask a question
Author

Harufumi Tsuchiya

Bio: Harufumi Tsuchiya is an academic researcher from Japan Atomic Energy Agency. The author has contributed to research in topics: Air shower & Cosmic ray. The author has an hindex of 24, co-authored 172 publications receiving 2491 citations. Previous affiliations of Harufumi Tsuchiya include Nagoya University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
20 Oct 2006-Science
TL;DR: Two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV) is presented, using the large data sample of the Tibet Air Shower Arrays, revealing finer details of the known anisotropies.
Abstract: The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

259 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10 14 to 10 17 eVusing 5:5 ; 10 7 events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m in altitude.
Abstract: We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10 14 to 10 17 eVusing 5:5 ; 10 7 events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m abovesealevel(anatmosphericdepthof 606gcm � 2 ).Thesizespectrumexhibitsasharpkneeatacorrespondingprimary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in thefinal result, assuming interaction models QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure protonandpureironprimarymodelsarealsoexaminedasextremecases.A detector simulationwasalsoperformedtoimproveouraccuracyindeterminingthesizeof theairshowersandtheenergyof theprimaryparticle.Weconfirmedthatthe all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components,leadingtoaweakdependenceontheinteractionmodel or theprimarymass.Thisisthehighest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.

194 citations

Journal ArticleDOI
22 Nov 2017-Nature
TL;DR: Ground-based observations of neutron and positron signals after lightning provide conclusive evidence of positrons being produced after the lightning, and the centre energy of the prolonged line emission corresponds to electron–positron annihilation.
Abstract: Ground-based observations during a thunderstorm provide conclusive evidence of positrons being produced after lightning, confirming that lightning can trigger photonuclear reactions. Lightning, particularly the very energetic γ-ray flashes, can theoretically generate radioactive isotopes through the interaction of relativistic electrons with atoms and molecules in the air. Some weak observational evidence for this was recently claimed. Teruaki Enoto and collaborators report observations of a coastal thunderstorm in Japan on 6 February 2017, in which they see a clear signature of positron annihilation associated with γ-ray flashes, combined with γ-rays arising in the de-excitation of nuclei excited by neutron capture. They conclude that the positrons arise from the decay of neutrons after the lightning. Lightning and thunderclouds are natural particle accelerators1. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds2,3, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories4,5,6,7,8,9, by airborne detectors10 and as terrestrial γ-ray flashes from space10,11,12,13,14. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions10,15,16,17,18,19 that produce neutrons and eventually positrons via β+ decay of the unstable radioactive isotopes, most notably 13N, which is generated via 14N + γ → 13N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons7,20,21 and positrons10,22 that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5–1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40–60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron–positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

136 citations

Journal ArticleDOI
TL;DR: This ground-based observation provides the first clear evidence that strong electric fields in thunderclouds can continuously accelerate electrons beyond 10 MeV prior to lightning discharges.
Abstract: A report is made on a comprehensive observation of a burstlike $\ensuremath{\gamma}$-ray emission from thunderclouds on the Sea of Japan, during strong thunderstorms on 6 January 2007. The detected emission, lasting for $\ensuremath{\sim}40\text{ }\text{ }\mathrm{sec}$, preceded cloud-to-ground lightning discharges. The burst spectrum, extending to 10 MeV, can be interpreted as consisting of bremsstrahlung photons originating from relativistic electrons. This ground-based observation provides the first clear evidence that strong electric fields in thunderclouds can continuously accelerate electrons beyond 10 MeV prior to lightning discharges.

130 citations

Journal ArticleDOI
TL;DR: In this paper, the sidereal anisotropy of cosmic ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003 was analyzed.
Abstract: We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

120 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A survey of the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV is given in this article, followed by an exposition of basic principles.
Abstract: We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes is explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data, including direct and indirect—especially γ-ray—observations, and indicate what we can learn about cosmic-ray propagation. Some important topics, including electron and antiparticle propagation, are chosen for discussion.

1,072 citations

Journal ArticleDOI
01 Apr 2011-Science
TL;DR: PAMELA data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy and find that the spectral shapes of these two species are different and cannot be described well by a single power law.
Abstract: Protons and helium nuclei are the most abundant components of the cosmic radiation Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 12 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics) We find that the spectral shapes of these two species are different and cannot be described well by a single power law These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data

900 citations

Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this paper, where the focus is on different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections We also discuss flare soft X-ray spectroscopy and the energetics of the process The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations

774 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations