scispace - formally typeset
Search or ask a question
Author

Harumi Yuzawa

Other affiliations: University of Tokyo
Bio: Harumi Yuzawa is an academic researcher from Juntendo University. The author has contributed to research in topics: Genome & Staphylococcus aureus. The author has an hindex of 9, co-authored 10 publications receiving 5042 citations. Previous affiliations of Harumi Yuzawa include University of Tokyo.

Papers
More filters
Journal ArticleDOI
TL;DR: The whole genome sequence of MW2, a strain of community-acquired MRSA, was ascertained by shotgun cloning and sequencing and found that it carried a range of virulence and resistance genes that was distinct from those displayed on the chromosomes of extant S aureus strains.

1,385 citations

Journal ArticleDOI
TL;DR: The fifth allotype of SCCmec is introduced, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain isolated in Australia, and it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosomes.
Abstract: Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-ΔmecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome.

719 citations

Journal ArticleDOI
Teruyo Ito1, Keiko Okuma1, Xiao Xue Ma1, Harumi Yuzawa1, Keiichi Hiramatsu1 
TL;DR: Completion of whole genome sequences of three methicillin-resistant S. aureus (MRSA) strains has provided a bird's-eye view of the distribution of the mobile genetic elements in the bacterial chromosome that encode antibiotic resistance as well as pathogenicity in S.aureus.

470 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of S.haemolyticus was determined to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species, and a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species.
Abstract: Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the “oriC environ,” likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.

302 citations


Cited by
More filters
Journal Article
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Abstract: Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

6,350 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of the current knowledge of the determinants (both human and bacterial) and risks of S aureus nasal carriage, and summarise the population dynamics of SA.
Abstract: Staphylococcus aureus is a frequent cause of infections in both the community and hospital. Worldwide, the increasing resistance of this pathogen to various antibiotics complicates treatment of S aureus infections. Effective measures to prevent S aureus infections are therefore urgently needed. It has been shown that nasal carriers of S aureus have an increased risk of acquiring an infection with this pathogen. The nose is the main ecological niche where S aureus resides in human beings, but the determinants of the carrier state are incompletely understood. Eradication of S aureus from nasal carriers prevents infection in specific patient categories-eg, haemodialysis and general surgery patients. However, recent randomised clinical trials in orthopaedic and non-surgical patients failed to show the efficacy of eliminating S aureus from the nose to prevent subsequent infection. Thus we must elucidate the mechanisms behind S aureus nasal carriage and infection to be able to develop new preventive strategies. We present an overview of the current knowledge of the determinants (both human and bacterial) and risks of S aureus nasal carriage. Studies on the population dynamics of S aureus are also summarised.

2,280 citations

Journal ArticleDOI
TL;DR: The molecular epidemiology of the epidemic waves of peniillin- and methicillin-resistant strains of S. aureus that have occurred since 1940 are reviewed, with a focus on the clinical and molecular epidemiological of CA-MRSA.
Abstract: Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.

2,222 citations

Journal ArticleDOI
TL;DR: This review details the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection and addresses the therapy of these infections and strategies for their prevention.
Abstract: Summary: Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.

1,807 citations

Journal ArticleDOI
TL;DR: Analysis of CA-MRSA isolates from the United States, France, Switzerland, Australia, New Zealand, and Western Samoa indicated distinct genetic backgrounds associated with each geographic origin, although predominantly restricted to the agr3 background.
Abstract: Infections caused by community-acquired (CA)-methicillin-resistant Staphylococcus aureus (MRSA) have been reported worldwide. We assessed whether any common genetic markers existed among 117 CA-MRSA isolates from the United States, France, Switzerland, Australia, New Zealand, and Western Samoa by performing polymerase chain reaction for 24 virulence factors and the methicillinresistance determinant. The genetic background of the strain was analyzed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The CAMRSA strains shared a type IV SCCmec cassette and the Panton-Valentine leukocidin locus, whereas the distribution of the other toxin genes was quite specific to the strains from each continent. PFGE and MLST analysis indicated distinct genetic backgrounds associated with each geographic origin, although predominantly restricted to the agr3 background. Within each continent, the genetic background of CA-MRSA strains did not correspond to that of the hospital-acquired MRSA.

1,790 citations