scispace - formally typeset
Search or ask a question
Author

Harutoshi Takeo

Bio: Harutoshi Takeo is an academic researcher from National Chemical Laboratory. The author has contributed to research in topics: Rotational spectroscopy & Infrared. The author has an hindex of 23, co-authored 127 publications receiving 1797 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the infrared spectra of the NH2 stretching modes of anilinen (n = 1, 2) clusters and corresponding cluster cations in a supersonic jet have been observed using an IR-REMPI double resonance technique.

85 citations

Journal ArticleDOI
TL;DR: In this article, a configuration with mutual NH2−π bonds and phenyl groups stacked in parallel is suggested for ground-state aniline dimers, formed in a supersonic jet, by combining infrared laser excitation and resonant two-photon ionization/time-of-flight mass spectrometry.
Abstract: The infrared depletion spectrum of the aniline dimer, formed in a supersonic jet, has been recorded in the N−H stretch region by combining infrared laser excitation and resonant two-photon ionization/time-of-flight mass spectrometry. Only two bands have been found at 3394.0 and 3465.9 cm-1 (±0.5 cm-1) in the region 3130−3530 cm-1. These are red-shifted by 27.8 and 42.3 cm-1 from the symmetric and asymmetric NH stretching vibrations of the aniline monomer, respectively. A configuration with mutual NH2···π bonds and phenyl groups stacked in parallel is suggested for the ground-state aniline dimer.

68 citations

Journal ArticleDOI
TL;DR: In this article, the microwave spectra of four isotopic species of dichlorine monoxide (OCl2) have been observed and the rotational constants have been obtained.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the rotational spectra of the 79Br and 81Br isotopic species of gaseous hypobromous acid, HOBr and DOBr, as well the v3 = 1 excited state of HOBr have been observed and analyzed.

58 citations

Journal ArticleDOI
TL;DR: In this article, the unstable species aminoborane, BH2NH2, was identified as a reaction product of ammonia with diborane by microwave spectroscopy.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The data and features that have been added or replaced since the previous edition of HITRAN are described, including instances of critical data that are forthcoming.
Abstract: Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.

1,846 citations

Journal ArticleDOI
TL;DR: Medium basis sets based upon contractions of Gaussian primitives are developed for the third‐row elements Ga through Kr, and good agreement with bond lengths and angles for representative vapor‐phase metal complexes is shown.
Abstract: Medium basis sets based upon contractions of Gaussian primitives are developed for the third-row elements Ga through Kr. The basis functions generalize the 6-31G and 6-31G* sets commonly used for atoms up to Ar. A reexamination of the 6-31G* basis set for K and Ca developed earlier leads to the inclusion of 3d orbitals into the valence space for these atoms. Now the 6-31G basis for the whole third-row K through Kr has six primitive Gaussians for 1s, 2s, 2p, 3s, and 3p orbitals, and a split-valence pair of three and one primitives for valence orbitals, which are 4s, 4p, and 3d. The nature of the polarization functions for third-row atoms is reexamined as well. The polarization functions for K, Ca, and Ga through Kr are single set of Cartesian d-type primitives. The polarization functions for transition metals are defined to be a single 7f set of uncontracted primitives. Comparison with experimental data shows good agreement with bond lengths and angles for representative vapor-phase metal complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 976–984, 2001

1,788 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the experimental methods for the production of free nanoclusters is presented, along with theoretical and simulation issues, always discussed in close connection with the experimental results.
Abstract: The structural properties of free nanoclusters are reviewed. Special attention is paid to the interplay of energetic, thermodynamic, and kinetic factors in the explanation of cluster structures that are actually observed in experiments. The review starts with a brief summary of the experimental methods for the production of free nanoclusters and then considers theoretical and simulation issues, always discussed in close connection with the experimental results. The energetic properties are treated first, along with methods for modeling elementary constituent interactions and for global optimization on the cluster potential-energy surface. After that, a section on cluster thermodynamics follows. The discussion includes the analysis of solid-solid structural transitions and of melting, with its size dependence. The last section is devoted to the growth kinetics of free nanoclusters and treats the growth of isolated clusters and their coalescence. Several specific systems are analyzed.

1,563 citations