scispace - formally typeset
Search or ask a question
Author

Hassan Akhlaghi

Other affiliations: Sharif University of Technology
Bio: Hassan Akhlaghi is an academic researcher from Ferdowsi University of Mashhad. The author has contributed to research in topics: Heat flux & Direct simulation Monte Carlo. The author has an hindex of 9, co-authored 30 publications receiving 247 citations. Previous affiliations of Hassan Akhlaghi include Sharif University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed an iterative technique to impose a desired (positive/negative) wall heat flux boundary condition in the DSMC method that can be useful for simulation of Micro/Nano electro-mechanical systems (MEMS/NEMS) with given heat energy exchange.

59 citations

Journal ArticleDOI
TL;DR: In this paper, convective heat transfer of the argon gas flow through a micro/nano channel with uniform heat flux wall boundary condition is investigated using the direct simulation Monte Carlo (DSMC) method.

40 citations

Journal ArticleDOI
TL;DR: In this article, the effect of shear work due to the velocity slip on the non-equilibrium heat transfer in a pressure driven micro/nanochannel is evaluated under the constant wall heat flux boundary condition.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number.
Abstract: In this paper, we study mass flow rate of rarefied gas flow through micro/nanoscale channels under simultaneous thermal and pressure gradients using the direct simulation Monte Carlo (DSMC) method. We first compare our DSMC solutions for mass flow rate of pure temperature-driven flow with those of Boltzmann-Krook-Walender equation and Bhatnagar-Gross-Krook solutions. Then, we focus on pressure–temperature-driven flows. The effects of different parameters such as flow rarefaction, channel pressure ratio, wall temperature gradient and flow bulk temperature on the thermal mass flow rate of the pressure–temperature-driven flow are examined. Based on our analysis, we propose a correlated relation that expresses normalized mass flow rate increment due to thermal creep as a function of flow rarefaction, normalized wall temperature gradient and pressure ratio over a wide range of Knudsen number. We examine our predictive relation by simulation of pressure-driven flows under uniform wall heat flux (UWH) boundary condition. Walls under UWH condition have non-uniform temperature distribution, that is, thermal creep effects exist. Our investigation shows that developed analytical relation could predict mass flow rate of rarefied pressure-driven gas flows under UWH condition at early transition regime, that is, up to Knudsen numbers of 0.5.

25 citations

Journal ArticleDOI
TL;DR: Investigating anti-Fourier heat transfer phenomenon in a rarefied gas confined within a lid-driven cavity using a novel flow decomposition technique in the direct simulation Monte Carlo method found that cold-to-hot heat transfer is a result of a subtle interplay between ballistic and collision parts in the slip and transition Knudsen regimes.
Abstract: This paper investigates anti-Fourier heat transfer phenomenon in a rarefied gas confined within a lid-driven cavity using a novel flow decomposition technique in the direct simulation Monte Carlo (DSMC) method proposed by Stefanov and co-workers. An isothermal cavity with different degrees of flow rarefaction from near continuum to mid transition regimes was considered to investigate cold-to-hot heat transfer from ballistic/collision flow decomposition viewpoint. A new cold-to-hot heat transfer indicator in the form of a scalar product of normalized heat flow vector and normalized temperature gradient vector has been introduced for the overall, ballistic and collision parts of these vectors. Using the new indicator, contributions of ballistic and collision flow parts to temperature and heat flux components was investigated with a specific emphasis on the cold-to-hot heat transfer phenomenon. We demonstrated that both ballistic and collision flow parts contribute to the occurrence of cold-to-hot heat transfer. However, it was found out that considered separately both ballistic and collision parts of heat transfer, when related to corresponding ballistic and collision temperature fields, they are ever hot-to-cold for all degrees of flow rarefaction. Thus, cold-to-hot heat transfer is a result of a subtle interplay between ballistic and collision parts in the slip and transition Knudsen regimes.

19 citations


Cited by
More filters
01 Jan 2002
TL;DR: In this article, the authors discuss the fluid-dynamic type equations derived from the Boltzmann equation as its asymptotic behavior for small mean free path and the boundary conditions that describe the behavior of the gas in the continuum limit.
Abstract: In this series of talks, I will discuss the fluid-dynamic-type equations that is derived from the Boltzmann equation as its the asymptotic behavior for small mean free path. The study of the relation of the two systems describing the behavior of a gas, the fluid-dynamic system and the Boltzmann system, has a long history and many works have been done. The Hilbert expansion and the Chapman–Enskog expansion are well-known among them. The behavior of a gas in the continuum limit, however, is not so simple as is widely discussed by superficial understanding of these solutions. The correct behavior has to be investigated by classifying the physical situations. The results are largely different depending on the situations. There is an important class of problems for which neither the Euler equations nor the Navier–Stokes give the correct answer. In these two expansions themselves, an initialor boundaryvalue problem is not taken into account. We will discuss the fluid-dynamic-type equations together with the boundary conditions that describe the behavior of the gas in the continuum limit by appropriately classifying the physical situations and taking the boundary condition into account. Here the result for the time-independent case is summarized. The time-dependent case will also be mentioned in the talk. The velocity distribution function approaches a Maxwellian fe, whose parameters depend on the position in the gas, in the continuum limit. The fluid-dynamictype equations that determine the macroscopic variables in the limit differ considerably depending on the character of the Maxwellian. The systems are classified by the size of |fe− fe0|/fe0, where fe0 is the stationary Maxwellian with the representative density and temperature in the gas. (1) |fe − fe0|/fe0 = O(Kn) (Kn : Knudsen number, i.e., Kn = `/L; ` : the reference mean free path. L : the reference length of the system) : S system (the incompressible Navier–Stokes set with the energy equation modified). (1a) |fe − fe0|/fe0 = o(Kn) : Linear system (the Stokes set). (2) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(Kn) (ξi : the molecular velocity) : SB system [the temperature T and density ρ in the continuum limit are determined together with the flow velocity vi of the first order of Kn amplified by 1/Kn (the ghost effect), and the thermal stress of the order of (Kn) must be retained in the equations (non-Navier–Stokes effect). The thermal creep[1] in the boundary condition must be taken into account. (3) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(1) : E+VB system (the Euler and viscous boundary-layer sets). E system (Euler set) in the case where the boundary is an interface of the gas and its condensed phase. The fluid-dynamic systems are classified in terms of the macroscopic parameters that appear in the boundary condition. Let Tw and δTw be, respectively, the characteristic values of the temperature and its variation of the boundary. Then, the fluid-dynamic systems mentioned above are classified with the nondimensional temperature variation δTw/Tw and Reynolds number Re as shown in Fig. 1. In the region SB, the classical gas dynamics is inapplicable, that is, neither the Euler

501 citations

Journal Article
TL;DR: In this paper, the authors review basic results and recent developments in the field of small-scale gaseous hydrodynamics, and present recent variance reduction ideas which address the prohibitive cost associated with the statistical sampling of macroscopic properties in low speed flows.
Abstract: This paper reviews basic results and recent developments in the field of small-scale gaseous hydrodynamics which has received significant attention in connection with small-scale science and technology. We focus on the modeling challenges arising from the breakdown of the Navier-Stokes description, observed when characteristic lengthscales become of the order of, or smaller than, the molecular mean free path. We discuss both theoretical results and numerical methods development. Examples of the former include the limit of applicability of the Navier-Stokes constitutive laws, the concept of second-order slip and the appropriate form of such a model, and how to reconcile experimental measurements of slipping flows with theory. We also review a number of recently developed theoretical descriptions of canonical nanoscale flows of engineering interest. On the simulation front, we review recent progress in characterizing the accuracy of the prevalent Boltzmann simulation method known as direct simulation Monte Carlo. We also present recent variance reduction ideas which address the prohibitive cost associated with the statistical sampling of macroscopic properties in low-speed flows.

199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method, i.e., the simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows.

97 citations

Journal ArticleDOI
TL;DR: The two-dimensional velocity distribution functions are obtained to report the molecular-based entropy distribution, and it is shown that the cold-to-hot heat transfer in the cavity is well in accordance with the second law of thermodynamics and takes place in the direction of increasing entropy.
Abstract: In this study the direct-simulation Monte Carlo (DSMC) method is utilized to investigate thermal characteristics of micro- or nanocavity flow. The rarefied cavity flow shows unconventional behaviors which cannot be predicted by the Fourier law, the constitutive relation for the continuum heat transfer. Our analysis in this study confirms some recent observations and shows that the gaseous flow near the top-left corner of the cavity is in a strong nonequilibrium state even within the early slip regime, Kn=0.005. As we obtained slip velocity and temperature jump on the driven lid of the cavity, we reported meaningful discrepancies between the direct and macroscopic sampling of rarefied flow properties in the DSMC method due to existence of nonequilibrium effects in the corners of cavity. The existence of unconventional nonequilibrium heat transfer mechanisms in the middle of slip regime, Kn=0.05, results in the appearance of cold-to-hot heat transfer in the microcavity. In the current study we demonstrate that existence of such unconventional heat transfer is strongly dependent on the Reynolds number and it vanishes in the large values of the lid velocity. As we compared DSMC solution with the results of regularized 13 moments (R13) equations, we showed that the thermal characteristic of the microcavity obtained by the R13 method coincides with the DSMC prediction. Our investigation also includes the analysis of molecular entropy in the microcavity to explain the heat transfer mechanism with the aid of the second law of thermodynamics. To this aim, we obtained the two-dimensional velocity distribution functions to report the molecular-based entropy distribution, and show that the cold-to-hot heat transfer in the cavity is well in accordance with the second law of thermodynamics and takes place in the direction of increasing entropy. At the end we introduce the entropy density for the rarefied flow and show that it can accurately illustrate departure from the equilibrium state.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the application of the MEMS gas sensor for detection of hydrogen gas is numerically studied to develop the application for this device in different industrial applications, and the flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are inclusively discussed.

62 citations