scispace - formally typeset
Search or ask a question
Author

Hassan Hammouri

Bio: Hassan Hammouri is an academic researcher from University of Lyon. The author has contributed to research in topics: Observer (quantum physics) & Nonlinear system. The author has an hindex of 35, co-authored 142 publications receiving 5586 citations. Previous affiliations of Hassan Hammouri include Claude Bernard University Lyon 1 & École supérieure de chimie physique électronique de Lyon.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an observer for nonlinear systems is constructed under rather general technical assumptions (the fact that some functions are globally Lipschitz) and a tentative application to biological systems is described.
Abstract: An observer for nonlinear systems is constructed under rather general technical assumptions (the fact that some functions are globally Lipschitz). This observer works either for autonomous systems or for nonlinear systems that are observable for any input. A tentative application to biological systems is described. >

1,781 citations

Journal ArticleDOI
TL;DR: The design of a residual generator for fault detection and isolation (FDI) in nonlinear systems which are affine in the control signals and in the failure modes is studied.
Abstract: The design of a residual generator for fault detection and isolation (FDI) in nonlinear systems which are affine in the control signals and in the failure modes is studied, First, the problem statement used for linear systems is extended, and a set of sufficient conditions for the existence of a solution is given. Next, circumstances under which high-gain observers for uniformly observable systems can be used in the synthesis of the residual generator are provided.

410 citations

Proceedings ArticleDOI
11 Dec 1991
TL;DR: It is shown that, under structure assumptions made on the second part, arbitrary nonlinearities can be dealt with through a high-gain approach and the system is uniformly observable, i.e. observable for every input.
Abstract: Observers are proposed for nonlinear systems. The system is split into two parts. The observer synthesis is performed according to the first part. It is shown that, under structure assumptions made on the second part, arbitrary nonlinearities can be dealt with through a high-gain approach. A consequence of this is that the system is uniformly observable, i.e. observable for every input. >

234 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a global theoretical framework for the analysis of bioreactor dynamics, which uses technical tools issued from the nonlinear systems theory, which allow the design of observer-based estimators.

175 citations

Journal ArticleDOI
TL;DR: This paper provides an observer for the block-stateaffine cascade systems, up to cascade non-linear injections, with necessary and sufficient conditions characterizing a subset of this class, together with a symbolically computable test.

145 citations


Cited by
More filters
Book
27 Sep 2011
TL;DR: Robust Model-Based Fault Diagnosis for Dynamic Systems targets both newcomers who want to get into this subject, and experts who are concerned with fundamental issues and are also looking for inspiration for future research.
Abstract: There is an increasing demand for dynamic systems to become safer and more reliable This requirement extends beyond the normally accepted safety-critical systems such as nuclear reactors and aircraft, where safety is of paramount importance, to systems such as autonomous vehicles and process control systems where the system availability is vital It is clear that fault diagnosis is becoming an important subject in modern control theory and practice Robust Model-Based Fault Diagnosis for Dynamic Systems presents the subject of model-based fault diagnosis in a unified framework It contains many important topics and methods; however, total coverage and completeness is not the primary concern The book focuses on fundamental issues such as basic definitions, residual generation methods and the importance of robustness in model-based fault diagnosis approaches In this book, fault diagnosis concepts and methods are illustrated by either simple academic examples or practical applications The first two chapters are of tutorial value and provide a starting point for newcomers to this field The rest of the book presents the state of the art in model-based fault diagnosis by discussing many important robust approaches and their applications This will certainly appeal to experts in this field Robust Model-Based Fault Diagnosis for Dynamic Systems targets both newcomers who want to get into this subject, and experts who are concerned with fundamental issues and are also looking for inspiration for future research The book is useful for both researchers in academia and professional engineers in industry because both theory and applications are discussed Although this is a research monograph, it will be an important text for postgraduate research students world-wide The largest market, however, will be academics, libraries and practicing engineers and scientists throughout the world

3,826 citations

Journal ArticleDOI
TL;DR: In this paper, an observer for nonlinear systems is constructed under rather general technical assumptions (the fact that some functions are globally Lipschitz) and a tentative application to biological systems is described.
Abstract: An observer for nonlinear systems is constructed under rather general technical assumptions (the fact that some functions are globally Lipschitz). This observer works either for autonomous systems or for nonlinear systems that are observable for any input. A tentative application to biological systems is described. >

1,781 citations

Journal ArticleDOI
01 Jul 1968-Nature
TL;DR: The Thermophysical Properties Research Literature Retrieval Guide as discussed by the authors was published by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore.
Abstract: Thermophysical Properties Research Literature Retrieval Guide Edited by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore Second edition, revised and expanded. Book 1: Pp. xxi + 819. Book 2: Pp.621. Book 3: Pp. ix + 1315. (New York: Plenum Press, 1967.) n.p.

1,240 citations

Journal ArticleDOI
TL;DR: A survey of modern nonlinear filtering methods for attitude estimation based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance is provided.
Abstract: This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST and the backwards-smoothing extended Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A twostep approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, Associate Professor, Department of Mechanical & Aerospace Engineering. Email: johnc@eng.buffalo.edu. Associate Fellow AIAA. Aerospace Engineer, Guidance, Navigation and Control Systems Engineering Branch. Email: Landis.Markley@nasa.gov. Fellow AIAA. Postdoctoral Research Fellow, Department of Mechanical & Aerospace Engineering. Email: cheng3@eng.buffalo.edu. Member AIAA.

1,116 citations

Journal ArticleDOI
TL;DR: A differential geometric approach to the problem of fault detection and isolation for nonlinear systems derived in terms of an unobservability distribution, which is computable by means of suitable algorithms.
Abstract: We present a differential geometric approach to the problem of fault detection and isolation for nonlinear systems. A necessary condition for the problem to be solvable is derived in terms of an unobservability distribution, which is computable by means of suitable algorithms. The existence and regularity of such a distribution implies the existence of changes of coordinates in the state and in the output space which induce an "observable" quotient subsystem unaffected by all fault signals but one. For this subsystem, a fault detection filter is designed.

802 citations