scispace - formally typeset
Search or ask a question
Author

Hassan Korbekandi

Bio: Hassan Korbekandi is an academic researcher from Isfahan University of Medical Sciences. The author has contributed to research in topics: Silver nanoparticle & Lactobacillus casei. The author has an hindex of 13, co-authored 26 publications receiving 1561 citations.

Papers
More filters
Journal Article
TL;DR: An overview of silver nanoparticle preparation by physical, chemical, and biological synthesis is presented to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.
Abstract: Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.

1,141 citations

Journal ArticleDOI
TL;DR: This review examines the biological mechanism and enzymatic process of nanoparticle production of biological systems used in nanoparticle synthesis.
Abstract: Recent developments in the biosynthesis of nanomaterials have demonstrated the important role of biological systems and microorganisms in nanoscience and nanotechnology. These organisms show a unique potential in environmentally friendly production and accumulation of nanoparticles with different shapes and sizes. Therefore, researchers in the field of nanoparticle synthesis are focusing their attention to biological systems. In order to obtain different applied chemical compositions, controlled monodispersity, desired morphologies (e.g., amorphous, spherical, needles, crystalline, triangular, and hexagonal), and interested particle size, they have investigated the biological mechanism and enzymatic process of nanoparticle production. In this review, most of these organisms used in nanoparticle synthesis are shown.

254 citations

Journal ArticleDOI
TL;DR: In this paper, the location of nanoparticles synthesis in Lactobacillus casei subsp. casei microorganism has been investigated and the results showed that the presence of AgNO3 (0.1 mmol L−1) in the culture as the enzyme inducer, and glucose (56 mmol L −1) as the electron donor in the reaction mixture had positive effects on nanoparticle production.
Abstract: BACKGROUND: The objectives of this study were optimization of silver nanoparticle synthesis using biotransformations by Lactobacillus casei subsp. casei, and studying the location of nanoparticles synthesis in this microorganism. RESULTS: The presence of AgNO3 (0.1 mmol L−1) in the culture as the enzyme inducer, and glucose (56 mmol L−1) as the electron donor in the reaction mixture had positive effects on nanoparticle production. By gradually increasing the concentration of AgNO3 (as the substrate) to 6 mmol L−1, nanoparticle production was increased. By increasing biomass, nanoparticles production was also increased. Biosynthesized silver nanoparticles were almost spherical, single (25–50 nm) or in aggregates (100 nm), attached to the surface of biomass or were inside and outside of the cells. CONCLUSION: The present study demonstrated the bioreductive synthesis of silver nanoparticles using L. casei subsp. casei at room temperature. In this research, and due to experience in optimization of biotransformation reactions, the reaction conditions were successfully optimized to increase the yield of nanoparticles production and productivity of this biosynthetic approach. Copyright © 2012 Society of Chemical Industry

138 citations

Journal ArticleDOI
TL;DR: More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly.
Abstract: Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly.

106 citations

Journal ArticleDOI
TL;DR: The current knowledge, the future prospects and challenges of microencapsulation of probiotics used in fermented milk products, and the influence of microEncapsulation on probiotics viability and survival are reviewed.
Abstract: Fermented milk products containing probiotics and prebiotics can be used in management, prevention and treatment of some important diseases (e.g., intestinal- and immune-associated diseases). Microencapsulation has been used as an efficient method for improving the viability of probiotics in fermented milks and gastrointestinal tract. Microencapsulation of probiotic bacterial cells provides shelter against adverse conditions during processing, storage and gastrointestinal passage. Important challenges in the field include survival of probiotics during microencapsulation, stability of microencapsulated probiotics in fermented milks, sensory quality of fermented milks with microencapsulated probiotics, and efficacy of microencapsulation to deliver probiotics and their controlled or targeted release in the gastrointestinal tract. This study reviews the current knowledge, and the future prospects and challenges of microencapsulation of probiotics used in fermented milk products. In addition, the influence of microencapsulation on probiotics viability and survival is reviewed.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Most of the plants used in metal nanoparticle synthesis are shown in this article, and the advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of nanoparticle formation in plants.

2,424 citations

Journal ArticleDOI
TL;DR: In this paper, a review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.

1,904 citations

Journal ArticleDOI
TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.

1,706 citations

Journal ArticleDOI
TL;DR: This review summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide nanoparticles using natural extracts and explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems.
Abstract: In materials science, “green” synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials/nanomaterials including metal/metal oxides nanomaterials, hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly utilized in laboratory and industry. In this review, we summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide [e.g., gold (Au), silver (Ag), copper oxide (CuO), and zinc oxide (ZnO)] nanoparticles using natural extracts. Importantly, we explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems. The stability/toxicity of nanoparticles and the associated surface engineering techniques for achieving biocompatibility are also discussed. Finally, we covered applications of such synthesized products to environmental remediation in terms of antimicrobial activity, catalytic activity, removal of pollutants dyes, and heavy metal ion sensing.

1,175 citations

Journal Article
TL;DR: An overview of silver nanoparticle preparation by physical, chemical, and biological synthesis is presented to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.
Abstract: Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.

1,141 citations