scispace - formally typeset
Search or ask a question
Author

Hayes McDonald

Bio: Hayes McDonald is an academic researcher from Vanderbilt University. The author has contributed to research in topics: MALDI imaging & Histone H1. The author has an hindex of 5, co-authored 6 publications receiving 1316 citations. Previous affiliations of Hayes McDonald include Vanderbilt University Medical Center.

Papers
More filters
Journal ArticleDOI
Brian J. Haas1, Sophien Kamoun2, Sophien Kamoun3, Michael C. Zody4, Michael C. Zody1, Rays H. Y. Jiang5, Rays H. Y. Jiang1, Robert E. Handsaker1, Liliana M. Cano3, Manfred Grabherr1, Chinnappa D. Kodira6, Chinnappa D. Kodira1, Sylvain Raffaele3, Trudy Torto-Alalibo6, Trudy Torto-Alalibo2, Tolga O. Bozkurt3, Audrey M. V. Ah-Fong7, Lucia Alvarado1, Vicky L. Anderson8, Miles R. Armstrong9, Anna O. Avrova9, Laura Baxter10, Jim Beynon10, Petra C. Boevink9, Stephanie R. Bollmann11, Jorunn I. B. Bos2, Vincent Bulone12, Guohong Cai13, Cahid Cakir2, James C. Carrington14, Megan Chawner15, Lucio Conti16, Stefano Costanzo11, Richard Ewan16, Noah Fahlgren14, Michael A. Fischbach17, Johanna Fugelstad12, Eleanor M. Gilroy9, Sante Gnerre1, Pamela J. Green18, Laura J. Grenville-Briggs8, John Griffith15, Niklaus J. Grünwald11, Karolyn Horn15, Neil R. Horner8, Chia-Hui Hu19, Edgar Huitema2, Dong-Hoon Jeong18, Alexandra M. E. Jones3, Jonathan D. G. Jones3, Richard W. Jones11, Elinor K. Karlsson1, Sridhara G. Kunjeti20, Kurt Lamour21, Zhenyu Liu2, Li-Jun Ma1, Dan MacLean3, Marcus C. Chibucos22, Hayes McDonald23, Jessica McWalters15, Harold J. G. Meijer5, William Morgan24, Paul Morris25, Carol A. Munro8, Keith O'Neill6, Keith O'Neill1, Manuel D. Ospina-Giraldo15, Andrés Pinzón, Leighton Pritchard9, Bernard H Ramsahoye26, Qinghu Ren27, Silvia Restrepo, Sourav Roy7, Ari Sadanandom16, Alon Savidor28, Sebastian Schornack3, David C. Schwartz29, Ulrike Schumann8, Ben Schwessinger3, Lauren Seyer15, Ted Sharpe1, Cristina Silvar3, Jing Song2, David J. Studholme3, Sean M. Sykes1, Marco Thines30, Marco Thines3, Peter J. I. van de Vondervoort5, Vipaporn Phuntumart25, Stephan Wawra8, R. Weide5, Joe Win3, Carolyn A. Young2, Shiguo Zhou29, William E. Fry13, Blake C. Meyers18, Pieter van West8, Jean B. Ristaino19, Francine Govers5, Paul R. J. Birch31, Stephen C. Whisson9, Howard S. Judelson7, Chad Nusbaum1 
17 Sep 2009-Nature
TL;DR: The sequence of the P. infestans genome is reported, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates and probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Abstract: Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.

1,341 citations

Journal ArticleDOI
TL;DR: The results indicate that iGSCs may help to understand CSC physiology and lead to development of potential therapeutic interventions aimed at differentiating tumour cells to render them more sensitive to chemotherapy or other standard agents.
Abstract: Emerging evidence shows that glioblastoma multiforme (GBM) originates from cancer stem cells (CSCs). Characterization of CSC-specific signalling pathways would help identify new therapeutic targets and perhaps lead to the development of more efficient therapies selectively targeting CSCs. Here; we successfully dedifferentiated two patient-derived GBM cell lines into CSC-like cells (induced glioma stem cells, iGSCs) through expression of Oct4, Sox2 and Nanog transcription factors. Transformed cells exhibited significant suppression of epidermal growth factor receptor and its downstream pathways. Compared with parental GBM cells, iGSCs formed large neurospheres even in the absence of exogenous mitogens; they exhibited significant sensitivity to salinomycin and chemoresistance to temozolomide. Further characterization of iGSCs revealed induction of NOTCH1 and Wnt/β-catenin signalling and expression of CD133, CD44 and ALDH1A1. Our results indicate that iGSCs may help us understand CSC physiology and lead to development of potential therapeutic interventions aimed at differentiating tumour cells to render them more sensitive to chemotherapy or other standard agents.

57 citations

Journal ArticleDOI
TL;DR: Wilms tumor specimens arising among different race groups show unique molecular fingerprints that could explain disparate incidences and biologic behavior and that could reveal novel therapeutic targets.
Abstract: Background Wilms tumor (WT) is the most common childhood kidney cancer worldwide and arises in children of black African ancestry with greater frequency and severity than other race groups. A biologic basis for this pediatric cancer disparity has not been previously determined. We hypothesized that unique molecular fingerprints might underlie the variable incidence and distinct disease characteristics of WT observed between race groups. Study Design To evaluate molecular disparities between WTs of different race groups, the Children's Oncology Group provided 80 favorable histology specimens divided evenly between black and white patients and matched for disease characteristics. As a surrogate of black sub-Saharan African patients, we also analyzed 18 Kenyan WT specimens. Tissues were probed for peptide profiles using matrix-assisted laser desorption ionization time of flight imaging mass spectrometry. To control for histologic variability within and between specimens, cellular regions were analyzed separately as triphasic (containing blastema, epithelia, and stroma), blastema only, and stroma only. Data were queried using ClinProTools and statistically analyzed. Results Peptide profiles, detected in triphasic WT regions, recognized race with good accuracy, which increased for blastema- or stroma-only regions. Peptide profiles from North American WTs differed between black and white race groups but were far more similar in composition than Kenyan specimens. Individual peptides were identified that also associated with WT patient and disease characteristics (eg, treatment failure and stage). Statistically significant peptide fragments were used to sequence proteins, revealing specific cellular signaling pathways and candidate drug targets. Conclusions Wilms tumor specimens arising among different race groups show unique molecular fingerprints that could explain disparate incidences and biologic behavior and that could reveal novel therapeutic targets.

25 citations

Journal ArticleDOI
TL;DR: It is demonstrated that kidney lysate possesses proteolytic cleavage activity toward SPAK, and the presence of the protease was verified in the active fractions, and recombinant aspartyl aminopeptidase recapitulated the cleavage pattern observed with kidneyLysate.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors used histology-based Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) to identify proteins that may be associated with the structural changes in the pulmonary arterial walls of patients with idiopathic pulmonary hypertension.
Abstract: The pathogenesis of idiopathic pulmonary hypertension is poorly understood. This paper utilized histology-based Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS) to identify as-yet unknown proteins that may be associated with the structural changes in the pulmonary arterial walls of patients with IPAH. The technology identified significant increases in two fragments of histone H1 in the IPAH cases compared to controls. This finding was further examined using immunofluorescence techniques applied to sections from IPAH and control pulmonary arteries. In addition, cultured pulmonary artery smooth muscle cells (PASMCs) were utilized for Western analysis of histone H1 and importin β and importin 7, immunoprecipitation and assessment of nucleosomal repeat length (NRL). Immunofluorescence techniques revealed that nuclear expression of histone H1 was decreased and the chromatin was less compact in the IPAH cases than in the controls; furthermore, some cases showed a marked increase in cytoplasmic histone H1 expression. Using nuclear and cytoplasmic fractions of cultured PASMCs, we confirmed the reduction in histone H1 in the nucleus and an increase in the cytoplasm in IPAH cells compared to controls. Immunoprecipitation demonstrated a decreased association of histone H1 with importin β while importin 7 was unchanged in the IPAH cells compared to controls. The assessment of NRL revealed that the distance between nucleosomes was increased by ~20 bp in IPAH compared to controls. We conclude that at least two factors contribute to the reduction in nuclear histone H1-fragmentation of the protein and decreased import of histone H1 into the nucleus by importins. We further suggest that the decreased nuclear H1 contributes the less compact nucleosomal pattern in IPAH and this, in turn, contributes to the increase in NRL.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms, suggesting novel biotechnological approaches to crop protection.
Abstract: Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.

2,666 citations

Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Journal ArticleDOI
29 Jun 2012-Science
TL;DR: Comparative analyses of 31 fungal genomes suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species.
Abstract: Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

1,396 citations

Journal ArticleDOI
TL;DR: It is argued that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity.
Abstract: Typically, pathogen-associated molecular patterns (PAMPs) are considered to be conserved throughout classes of microbes and to contribute to general microbial fitness, whereas effectors are species, race, or strain specific and contribute to pathogen virulence. Both types of molecule can trigger plant immunity, designated PAMP-triggered and effector-triggered immunity (PTI and ETI, respectively). However, not all microbial defense activators conform to the common distinction between PAMPs and effectors. For example, some effectors display wide distribution, while some PAMPs are rather narrowly conserved or contribute to pathogen virulence. As effectors may elicit defense responses and PAMPs may be required for virulence, single components cannot exclusively be referred to by one of the two terms. Therefore, we put forward that the distinction between PAMPs and effectors, between PAMP receptors and resistance proteins, and, therefore, also between PTI and ETI, cannot strictly be maintained. Rather, as illustrated by examples provided here, there is a continuum between PTI and ETI. We argue that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity.

867 citations

Journal ArticleDOI
TL;DR: Cases in which genome plasticity has contributed to the emergence of new virulence traits are illustrated and how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts are discussed.
Abstract: Many species of fungi and oomycetes are plant pathogens of great economic importance. Over the past 7 years, the genomes of more than 30 of these filamentous plant pathogens have been sequenced, revealing remarkable diversity in genome size and architecture. Whereas the genomes of many parasites and bacterial symbionts have been reduced over time, the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansions. In these lineages, the genes encoding proteins involved in host interactions are frequently polymorphic and reside within repeat-rich regions of the genome. Here, we review the properties of these adaptable genome regions and the mechanisms underlying their plasticity, and we illustrate cases in which genome plasticity has contributed to the emergence of new virulence traits. We also discuss how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts.

622 citations